基于小波神经网络的暂态故障信号检测与识别

Wei-rong Chen, Qing-quan Qian, Xiao-Ru Wang
{"title":"基于小波神经网络的暂态故障信号检测与识别","authors":"Wei-rong Chen, Qing-quan Qian, Xiao-Ru Wang","doi":"10.1109/ICICS.1997.652215","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel approach to detect and identify transient fault signals. Because the fault signals are non-stationary transient ones, the traditional signal analysis methods, such as the FFT, are not so efficient and useful for fault signal detection. A wavelet neural network (WNN) is used to extract the signal features, and then a feedforward neural network (FNN) is used to identify and classify these features to detect the fault signals. The simulation shows that this method is suitable for application of transient fault detection.","PeriodicalId":71361,"journal":{"name":"信息通信技术","volume":"39 1","pages":"1377-1381 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Wavelet neural network based transient fault signal detection and identification\",\"authors\":\"Wei-rong Chen, Qing-quan Qian, Xiao-Ru Wang\",\"doi\":\"10.1109/ICICS.1997.652215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel approach to detect and identify transient fault signals. Because the fault signals are non-stationary transient ones, the traditional signal analysis methods, such as the FFT, are not so efficient and useful for fault signal detection. A wavelet neural network (WNN) is used to extract the signal features, and then a feedforward neural network (FNN) is used to identify and classify these features to detect the fault signals. The simulation shows that this method is suitable for application of transient fault detection.\",\"PeriodicalId\":71361,\"journal\":{\"name\":\"信息通信技术\",\"volume\":\"39 1\",\"pages\":\"1377-1381 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息通信技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.1997.652215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息通信技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICICS.1997.652215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种检测和识别暂态故障信号的新方法。由于故障信号是非平稳暂态信号,传统的信号分析方法,如FFT,在故障信号检测中效率不高。首先利用小波神经网络(WNN)提取信号特征,然后利用前馈神经网络(FNN)对这些特征进行识别和分类,从而检测出故障信号。仿真结果表明,该方法适用于暂态故障检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet neural network based transient fault signal detection and identification
This paper proposes a novel approach to detect and identify transient fault signals. Because the fault signals are non-stationary transient ones, the traditional signal analysis methods, such as the FFT, are not so efficient and useful for fault signal detection. A wavelet neural network (WNN) is used to extract the signal features, and then a feedforward neural network (FNN) is used to identify and classify these features to detect the fault signals. The simulation shows that this method is suitable for application of transient fault detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1369
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信