{"title":"可制造模拟电路的合成","authors":"T. Mukherjee, L. Carley, Rob A. Rutenbar","doi":"10.1109/ICCAD.1994.629880","DOIUrl":null,"url":null,"abstract":"We describe a synthesis system that takes operating range constraints and inter- and intra-circuit parametric manufacturing variations into account while designing a sized and biased analog circuit. Previous approaches to CAD for analog circuit synthesis have concentrated on nominal analog circuit design, and subsequent optimization of these circuits for statistical fluctuations and operating point ranges. Our approach simultaneously synthesizes and optimizes for operating and manufacturing variations by mapping the circuit design problem into an Infinite Programming problem and solving it using an annealing within annealing formulation. We present circuits designed by this integrated synthesis system, and show that they indeed meet their operating range and parametric manufacturing constraints.","PeriodicalId":90518,"journal":{"name":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","volume":"131 1","pages":"586-593"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Synthesis Of Manufacturable Analog Circuits\",\"authors\":\"T. Mukherjee, L. Carley, Rob A. Rutenbar\",\"doi\":\"10.1109/ICCAD.1994.629880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a synthesis system that takes operating range constraints and inter- and intra-circuit parametric manufacturing variations into account while designing a sized and biased analog circuit. Previous approaches to CAD for analog circuit synthesis have concentrated on nominal analog circuit design, and subsequent optimization of these circuits for statistical fluctuations and operating point ranges. Our approach simultaneously synthesizes and optimizes for operating and manufacturing variations by mapping the circuit design problem into an Infinite Programming problem and solving it using an annealing within annealing formulation. We present circuits designed by this integrated synthesis system, and show that they indeed meet their operating range and parametric manufacturing constraints.\",\"PeriodicalId\":90518,\"journal\":{\"name\":\"ICCAD. IEEE/ACM International Conference on Computer-Aided Design\",\"volume\":\"131 1\",\"pages\":\"586-593\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICCAD. IEEE/ACM International Conference on Computer-Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1994.629880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1994.629880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We describe a synthesis system that takes operating range constraints and inter- and intra-circuit parametric manufacturing variations into account while designing a sized and biased analog circuit. Previous approaches to CAD for analog circuit synthesis have concentrated on nominal analog circuit design, and subsequent optimization of these circuits for statistical fluctuations and operating point ranges. Our approach simultaneously synthesizes and optimizes for operating and manufacturing variations by mapping the circuit design problem into an Infinite Programming problem and solving it using an annealing within annealing formulation. We present circuits designed by this integrated synthesis system, and show that they indeed meet their operating range and parametric manufacturing constraints.