求解非线性方程的单参数三阶迭代法

J. An, Yuan Yuan
{"title":"求解非线性方程的单参数三阶迭代法","authors":"J. An, Yuan Yuan","doi":"10.1109/ICIC.2011.88","DOIUrl":null,"url":null,"abstract":"In this paper, we present a modification of the two-step Newton's method which produces a class of one-parameter iterative methods for solving nonlinear equations. An interpolating polynomial is constructed to avoid the evaluation of derivative. The convergence analysis shows that the new methods are third-order convergent and require one function and two first derivative evaluations per iteration. Several numerical examples are given to illustrate the performance of the presented methods.","PeriodicalId":6397,"journal":{"name":"2011 Fourth International Conference on Information and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Parameter Third-Order Iterative Methods for Solving Nonlinear Equations\",\"authors\":\"J. An, Yuan Yuan\",\"doi\":\"10.1109/ICIC.2011.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a modification of the two-step Newton's method which produces a class of one-parameter iterative methods for solving nonlinear equations. An interpolating polynomial is constructed to avoid the evaluation of derivative. The convergence analysis shows that the new methods are third-order convergent and require one function and two first derivative evaluations per iteration. Several numerical examples are given to illustrate the performance of the presented methods.\",\"PeriodicalId\":6397,\"journal\":{\"name\":\"2011 Fourth International Conference on Information and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Information and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIC.2011.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了对两步牛顿法的一种改进,得到了求解非线性方程的一类单参数迭代方法。构造了插值多项式,避免了求导的求值。收敛性分析表明,新方法具有三阶收敛性,且每次迭代只需要一个函数和两次一阶导数求值。数值算例说明了所提方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One-Parameter Third-Order Iterative Methods for Solving Nonlinear Equations
In this paper, we present a modification of the two-step Newton's method which produces a class of one-parameter iterative methods for solving nonlinear equations. An interpolating polynomial is constructed to avoid the evaluation of derivative. The convergence analysis shows that the new methods are third-order convergent and require one function and two first derivative evaluations per iteration. Several numerical examples are given to illustrate the performance of the presented methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信