{"title":"服务系统中动态定价和容量评估的在线学习方法","authors":"Xinyun Chen, Yunan Liu, Guiyu Hong","doi":"10.1287/opre.2020.0612","DOIUrl":null,"url":null,"abstract":"Online Learning in Queueing Systems Most queueing models have no analytic solutions, so previous research often resorts to heavy-traffic analysis for performance analysis and optimization, which requires the system scale (e.g., arrival and service rate) to grow to infinity. In “An Online Learning Approach to Dynamic Pricing and Capacity Sizing in Service Systems,” X. Chen, Y. Liu, and G. Hong develop a new “scale-free” online learning framework designed for optimizing a queueing system, called gradient-based online learning in queue (GOLiQ). GOLiQ prescribes an efficient procedure to obtain improved decisions in successive cycles using newly collected queueing data (e.g., arrival counts, waiting times, and busy times). Besides its robustness in the system scale, GOLiQ is advantageous when focusing on performance optimization in the long run because its data-driven nature enables it to constantly produce improved solutions which will eventually reach optimality. Effectiveness of GOLiQ is substantiated by theoretical regret analysis (with a logarithmic regret bound) and simulation experiments.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"130 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An Online Learning Approach to Dynamic Pricing and Capacity Sizing in Service Systems\",\"authors\":\"Xinyun Chen, Yunan Liu, Guiyu Hong\",\"doi\":\"10.1287/opre.2020.0612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online Learning in Queueing Systems Most queueing models have no analytic solutions, so previous research often resorts to heavy-traffic analysis for performance analysis and optimization, which requires the system scale (e.g., arrival and service rate) to grow to infinity. In “An Online Learning Approach to Dynamic Pricing and Capacity Sizing in Service Systems,” X. Chen, Y. Liu, and G. Hong develop a new “scale-free” online learning framework designed for optimizing a queueing system, called gradient-based online learning in queue (GOLiQ). GOLiQ prescribes an efficient procedure to obtain improved decisions in successive cycles using newly collected queueing data (e.g., arrival counts, waiting times, and busy times). Besides its robustness in the system scale, GOLiQ is advantageous when focusing on performance optimization in the long run because its data-driven nature enables it to constantly produce improved solutions which will eventually reach optimality. Effectiveness of GOLiQ is substantiated by theoretical regret analysis (with a logarithmic regret bound) and simulation experiments.\",\"PeriodicalId\":49809,\"journal\":{\"name\":\"Military Operations Research\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Military Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2020.0612\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2020.0612","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
An Online Learning Approach to Dynamic Pricing and Capacity Sizing in Service Systems
Online Learning in Queueing Systems Most queueing models have no analytic solutions, so previous research often resorts to heavy-traffic analysis for performance analysis and optimization, which requires the system scale (e.g., arrival and service rate) to grow to infinity. In “An Online Learning Approach to Dynamic Pricing and Capacity Sizing in Service Systems,” X. Chen, Y. Liu, and G. Hong develop a new “scale-free” online learning framework designed for optimizing a queueing system, called gradient-based online learning in queue (GOLiQ). GOLiQ prescribes an efficient procedure to obtain improved decisions in successive cycles using newly collected queueing data (e.g., arrival counts, waiting times, and busy times). Besides its robustness in the system scale, GOLiQ is advantageous when focusing on performance optimization in the long run because its data-driven nature enables it to constantly produce improved solutions which will eventually reach optimality. Effectiveness of GOLiQ is substantiated by theoretical regret analysis (with a logarithmic regret bound) and simulation experiments.
期刊介绍:
Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.