对称锥上笛卡尔P * (Κ)-线性互补问题的内点法

ORiON Pub Date : 2014-06-03 DOI:10.5784/30-1-140
B. Kheirfam
{"title":"对称锥上笛卡尔P * (Κ)-线性互补问题的内点法","authors":"B. Kheirfam","doi":"10.5784/30-1-140","DOIUrl":null,"url":null,"abstract":"A novel primal-dual path-following interior-point algorithm for the Cartesian P*(k)-linear complementarity problem over symmetric cones is presented. The algorithm is based on a reformulation of the central path for finding the search directions. For a full Nesterov-Todd step feasible interior-point algorithm based on the new search directions, the complexity bound of the algorithm with small-update approach is the best-available bound.","PeriodicalId":30587,"journal":{"name":"ORiON","volume":"443 1","pages":"41-58"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An interior-point method for the Cartesian P * ( Κ )-linear complementarity problem over symmetric cones\",\"authors\":\"B. Kheirfam\",\"doi\":\"10.5784/30-1-140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel primal-dual path-following interior-point algorithm for the Cartesian P*(k)-linear complementarity problem over symmetric cones is presented. The algorithm is based on a reformulation of the central path for finding the search directions. For a full Nesterov-Todd step feasible interior-point algorithm based on the new search directions, the complexity bound of the algorithm with small-update approach is the best-available bound.\",\"PeriodicalId\":30587,\"journal\":{\"name\":\"ORiON\",\"volume\":\"443 1\",\"pages\":\"41-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ORiON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5784/30-1-140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ORiON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5784/30-1-140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

针对对称锥上的笛卡尔P*(k)-线性互补问题,提出了一种新的原对偶路径跟踪内点算法。该算法基于中心路径的重新表述来寻找搜索方向。对于基于新搜索方向的全Nesterov-Todd步可行内点算法,采用小更新方法的算法的复杂度界为最优可用界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An interior-point method for the Cartesian P * ( Κ )-linear complementarity problem over symmetric cones
A novel primal-dual path-following interior-point algorithm for the Cartesian P*(k)-linear complementarity problem over symmetric cones is presented. The algorithm is based on a reformulation of the central path for finding the search directions. For a full Nesterov-Todd step feasible interior-point algorithm based on the new search directions, the complexity bound of the algorithm with small-update approach is the best-available bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信