{"title":"量子群Uq(sl3)的多项式模","authors":"L. Xia, Qianqian Cai, Jiao Zhang","doi":"10.1142/s1005386722000475","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a finite dimensional complex simple Lie algebra with Cartan subalgebra [Formula: see text]. Then [Formula: see text] has a [Formula: see text]-module structure if and only if [Formula: see text] is of type [Formula: see text] or of type [Formula: see text]; this is called the polynomial module of rank one. In the quantum version, the rank one polynomial modules over [Formula: see text] have been classified. In this paper, we prove that the quantum group [Formula: see text] has no rank one polynomial module.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Polynomial Modules over Quantum Group Uq(sl3)\",\"authors\":\"L. Xia, Qianqian Cai, Jiao Zhang\",\"doi\":\"10.1142/s1005386722000475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a finite dimensional complex simple Lie algebra with Cartan subalgebra [Formula: see text]. Then [Formula: see text] has a [Formula: see text]-module structure if and only if [Formula: see text] is of type [Formula: see text] or of type [Formula: see text]; this is called the polynomial module of rank one. In the quantum version, the rank one polynomial modules over [Formula: see text] have been classified. In this paper, we prove that the quantum group [Formula: see text] has no rank one polynomial module.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设[公式:见文]为具有Cartan子代数的有限维复单李代数[公式:见文]。那么,当且仅当[Formula: see text]的类型为[Formula: see text]或[Formula: see text]时,[Formula: see text]具有[Formula: see text]-模块结构;这叫做第1阶的多项式模。在量子版本中,[公式:见文本]上的1阶多项式模块已被分类。本文证明了量子群[公式:见文]不存在秩一多项式模。
Let [Formula: see text] be a finite dimensional complex simple Lie algebra with Cartan subalgebra [Formula: see text]. Then [Formula: see text] has a [Formula: see text]-module structure if and only if [Formula: see text] is of type [Formula: see text] or of type [Formula: see text]; this is called the polynomial module of rank one. In the quantum version, the rank one polynomial modules over [Formula: see text] have been classified. In this paper, we prove that the quantum group [Formula: see text] has no rank one polynomial module.