量子群Uq(sl3)的多项式模

Pub Date : 2022-12-01 DOI:10.1142/s1005386722000475
L. Xia, Qianqian Cai, Jiao Zhang
{"title":"量子群Uq(sl3)的多项式模","authors":"L. Xia, Qianqian Cai, Jiao Zhang","doi":"10.1142/s1005386722000475","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a finite dimensional complex simple Lie algebra with Cartan subalgebra [Formula: see text]. Then [Formula: see text] has a [Formula: see text]-module structure if and only if [Formula: see text] is of type [Formula: see text] or of type [Formula: see text]; this is called the polynomial module of rank one. In the quantum version, the rank one polynomial modules over [Formula: see text] have been classified. In this paper, we prove that the quantum group [Formula: see text] has no rank one polynomial module.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Polynomial Modules over Quantum Group Uq(sl3)\",\"authors\":\"L. Xia, Qianqian Cai, Jiao Zhang\",\"doi\":\"10.1142/s1005386722000475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a finite dimensional complex simple Lie algebra with Cartan subalgebra [Formula: see text]. Then [Formula: see text] has a [Formula: see text]-module structure if and only if [Formula: see text] is of type [Formula: see text] or of type [Formula: see text]; this is called the polynomial module of rank one. In the quantum version, the rank one polynomial modules over [Formula: see text] have been classified. In this paper, we prove that the quantum group [Formula: see text] has no rank one polynomial module.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]为具有Cartan子代数的有限维复单李代数[公式:见文]。那么,当且仅当[Formula: see text]的类型为[Formula: see text]或[Formula: see text]时,[Formula: see text]具有[Formula: see text]-模块结构;这叫做第1阶的多项式模。在量子版本中,[公式:见文本]上的1阶多项式模块已被分类。本文证明了量子群[公式:见文]不存在秩一多项式模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Polynomial Modules over Quantum Group Uq(sl3)
Let [Formula: see text] be a finite dimensional complex simple Lie algebra with Cartan subalgebra [Formula: see text]. Then [Formula: see text] has a [Formula: see text]-module structure if and only if [Formula: see text] is of type [Formula: see text] or of type [Formula: see text]; this is called the polynomial module of rank one. In the quantum version, the rank one polynomial modules over [Formula: see text] have been classified. In this paper, we prove that the quantum group [Formula: see text] has no rank one polynomial module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信