Narayanan Murali, A. Ghazari, Shiqi Zheng, Kaiyuan Jin, T. Fisher, N. Ghoniem, Xiaochun Li
{"title":"Haynes 282微管在CO2中的高温氧化","authors":"Narayanan Murali, A. Ghazari, Shiqi Zheng, Kaiyuan Jin, T. Fisher, N. Ghoniem, Xiaochun Li","doi":"10.1080/09603409.2023.2205666","DOIUrl":null,"url":null,"abstract":"ABSTRACT The oxidation characteristics of Haynes 282 microtubes measuring 1 mm in diameter and 200 µm thick exposed to CO2 at elevated temperature are reported. After 215 hours at 700°C and 1 atm, a thin, protective chromia scale accumulates up to 2.03 µm from the outer surface, approximately 1% of the thickness, and internal aluminum oxidation is observed 2.59 µm from the inner surface. The results suggest that oxidation is limited by oxygen diffusion through the growing oxide scale layer. The average grain size in the microtube is 10 µm, and it decreases to 5 µm closer to the inner surface. Severe plastic deformation and variable dynamic recovery and recrystallization from the manufacturing process were observed throughout the microtube. Overall grain size and distribution in the microtube were found to be independent of thermal exposure, despite the occurrence of recrystallization. The superalloy microtube geometry shows promising performance in high-temperature thermal applications. ","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":"105 1","pages":"218 - 229"},"PeriodicalIF":1.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-temperature oxidation of Haynes 282 microtubes in CO2\",\"authors\":\"Narayanan Murali, A. Ghazari, Shiqi Zheng, Kaiyuan Jin, T. Fisher, N. Ghoniem, Xiaochun Li\",\"doi\":\"10.1080/09603409.2023.2205666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The oxidation characteristics of Haynes 282 microtubes measuring 1 mm in diameter and 200 µm thick exposed to CO2 at elevated temperature are reported. After 215 hours at 700°C and 1 atm, a thin, protective chromia scale accumulates up to 2.03 µm from the outer surface, approximately 1% of the thickness, and internal aluminum oxidation is observed 2.59 µm from the inner surface. The results suggest that oxidation is limited by oxygen diffusion through the growing oxide scale layer. The average grain size in the microtube is 10 µm, and it decreases to 5 µm closer to the inner surface. Severe plastic deformation and variable dynamic recovery and recrystallization from the manufacturing process were observed throughout the microtube. Overall grain size and distribution in the microtube were found to be independent of thermal exposure, despite the occurrence of recrystallization. The superalloy microtube geometry shows promising performance in high-temperature thermal applications. \",\"PeriodicalId\":49877,\"journal\":{\"name\":\"Materials at High Temperatures\",\"volume\":\"105 1\",\"pages\":\"218 - 229\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials at High Temperatures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09603409.2023.2205666\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials at High Temperatures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09603409.2023.2205666","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High-temperature oxidation of Haynes 282 microtubes in CO2
ABSTRACT The oxidation characteristics of Haynes 282 microtubes measuring 1 mm in diameter and 200 µm thick exposed to CO2 at elevated temperature are reported. After 215 hours at 700°C and 1 atm, a thin, protective chromia scale accumulates up to 2.03 µm from the outer surface, approximately 1% of the thickness, and internal aluminum oxidation is observed 2.59 µm from the inner surface. The results suggest that oxidation is limited by oxygen diffusion through the growing oxide scale layer. The average grain size in the microtube is 10 µm, and it decreases to 5 µm closer to the inner surface. Severe plastic deformation and variable dynamic recovery and recrystallization from the manufacturing process were observed throughout the microtube. Overall grain size and distribution in the microtube were found to be independent of thermal exposure, despite the occurrence of recrystallization. The superalloy microtube geometry shows promising performance in high-temperature thermal applications.
期刊介绍:
Materials at High Temperatures welcomes contributions relating to high temperature applications in the energy generation, aerospace, chemical and process industries. The effects of high temperatures and extreme environments on the corrosion and oxidation, fatigue, creep, strength and wear of metallic alloys, ceramics, intermetallics, and refractory and composite materials relative to these industries are covered.
Papers on the modelling of behaviour and life prediction are also welcome, provided these are validated by experimental data and explicitly linked to actual or potential applications. Contributions addressing the needs of designers and engineers (e.g. standards and codes of practice) relative to the areas of interest of this journal also fall within the scope. The term ''high temperatures'' refers to the subsequent temperatures of application and not, for example, to those of processing itself.
Materials at High Temperatures publishes regular thematic issues on topics of current interest. Proposals for issues are welcomed; please contact one of the Editors with details.