{"title":"表面活性剂提高采收率模拟的四相相对渗透率和毛细管压力框架","authors":"B. Samson, M. Shaykhattarov","doi":"10.2118/203978-ms","DOIUrl":null,"url":null,"abstract":"\n Consistent set of algorithms to calculate phase relative permeability and capillary pressure values in the four-phase representation suitable for surfactant flooding simulation has been derived. The novel formulation resolves difficulties with applying existing three-phase approaches, and it ensures continuity of transport characteristics at solubilization changes in phase composition.","PeriodicalId":11146,"journal":{"name":"Day 1 Tue, October 26, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four Phase Relative Permeability and Capillary Pressure Framework for Surfactant EOR Simulation\",\"authors\":\"B. Samson, M. Shaykhattarov\",\"doi\":\"10.2118/203978-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Consistent set of algorithms to calculate phase relative permeability and capillary pressure values in the four-phase representation suitable for surfactant flooding simulation has been derived. The novel formulation resolves difficulties with applying existing three-phase approaches, and it ensures continuity of transport characteristics at solubilization changes in phase composition.\",\"PeriodicalId\":11146,\"journal\":{\"name\":\"Day 1 Tue, October 26, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, October 26, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/203978-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, October 26, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/203978-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Four Phase Relative Permeability and Capillary Pressure Framework for Surfactant EOR Simulation
Consistent set of algorithms to calculate phase relative permeability and capillary pressure values in the four-phase representation suitable for surfactant flooding simulation has been derived. The novel formulation resolves difficulties with applying existing three-phase approaches, and it ensures continuity of transport characteristics at solubilization changes in phase composition.