图像去噪的时间依赖模型

Q3 Computer Science
Santosh Kumar, M. Ahmad
{"title":"图像去噪的时间依赖模型","authors":"Santosh Kumar, M. Ahmad","doi":"10.4236/JSIP.2015.61003","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new time \ndependent model for solving total variation (TV) minimization problem in \nimage denoising. The main idea is to apply a priori smoothness on the solution \nimage. This is a constrained optimization type of numerical algorithm for \nremoving noise from images. The constraints are imposed using Lagrange’s \nmultipliers and the solution is obtained using the gradient projection method. \n1D and 2D numerical experimental results by explicit numerical schemes are \ndiscussed.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"9 1","pages":"28-38"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Time Dependent Model for Image Denoising\",\"authors\":\"Santosh Kumar, M. Ahmad\",\"doi\":\"10.4236/JSIP.2015.61003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new time \\ndependent model for solving total variation (TV) minimization problem in \\nimage denoising. The main idea is to apply a priori smoothness on the solution \\nimage. This is a constrained optimization type of numerical algorithm for \\nremoving noise from images. The constraints are imposed using Lagrange’s \\nmultipliers and the solution is obtained using the gradient projection method. \\n1D and 2D numerical experimental results by explicit numerical schemes are \\ndiscussed.\",\"PeriodicalId\":38474,\"journal\":{\"name\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"volume\":\"9 1\",\"pages\":\"28-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/JSIP.2015.61003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JSIP.2015.61003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的时间依赖模型来解决图像去噪中的总变差最小化问题。主要思想是在解图像上应用先验平滑。这是一种约束优化类型的数值算法,用于从图像中去除噪声。利用拉格朗日乘子法施加约束,用梯度投影法求解。讨论了采用显式数值格式的一维和二维数值实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Time Dependent Model for Image Denoising
In this paper, we propose a new time dependent model for solving total variation (TV) minimization problem in image denoising. The main idea is to apply a priori smoothness on the solution image. This is a constrained optimization type of numerical algorithm for removing noise from images. The constraints are imposed using Lagrange’s multipliers and the solution is obtained using the gradient projection method. 1D and 2D numerical experimental results by explicit numerical schemes are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信