Miguel Chávez Tapia, Talia Xu, Zehang Wu, M. Z. Zamalloa
{"title":"SunBox:与环境光的屏幕到相机通信","authors":"Miguel Chávez Tapia, Talia Xu, Zehang Wu, M. Z. Zamalloa","doi":"10.1145/3534602","DOIUrl":null,"url":null,"abstract":"A recent development in wireless communication is the use of optical shutters and smartphone cameras to create optical links solely from ambient light . At the transmitter, a liquid crystal display (LCD) modulates ambient light by changing its level of transparency. At the receiver, a smartphone camera decodes the optical pattern. This LCD-to-camera link requires low-power levels at the transmitter, and it is easy to deploy because it does not require modifying the existing lighting infrastructure. The system, however, provides a low data rate, of just a few tens of bps. This occurs because the LCDs used in the state-of-the-art are slow single-pixel transmitters. To overcome this limitation, we introduce a novel multi-pixel display. Our display is similar to a simple screen, but instead of using embedded LEDs to radiate information, it uses only the surrounding ambient light. We build a prototype, called SunBox, and evaluate it indoors and outdoors with both, artificial and natural ambient light. Our results show that SunBox can achieve a throughput between 2kbps and 10kbps using a low-end smartphone camera with just 30FPS. To the best of our knowledge, this is the first screen-to-camera system that works solely with ambient light. ;","PeriodicalId":20463,"journal":{"name":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","volume":"124 1","pages":"46:1-46:26"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SunBox: Screen-to-Camera Communication with Ambient Light\",\"authors\":\"Miguel Chávez Tapia, Talia Xu, Zehang Wu, M. Z. Zamalloa\",\"doi\":\"10.1145/3534602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recent development in wireless communication is the use of optical shutters and smartphone cameras to create optical links solely from ambient light . At the transmitter, a liquid crystal display (LCD) modulates ambient light by changing its level of transparency. At the receiver, a smartphone camera decodes the optical pattern. This LCD-to-camera link requires low-power levels at the transmitter, and it is easy to deploy because it does not require modifying the existing lighting infrastructure. The system, however, provides a low data rate, of just a few tens of bps. This occurs because the LCDs used in the state-of-the-art are slow single-pixel transmitters. To overcome this limitation, we introduce a novel multi-pixel display. Our display is similar to a simple screen, but instead of using embedded LEDs to radiate information, it uses only the surrounding ambient light. We build a prototype, called SunBox, and evaluate it indoors and outdoors with both, artificial and natural ambient light. Our results show that SunBox can achieve a throughput between 2kbps and 10kbps using a low-end smartphone camera with just 30FPS. To the best of our knowledge, this is the first screen-to-camera system that works solely with ambient light. ;\",\"PeriodicalId\":20463,\"journal\":{\"name\":\"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.\",\"volume\":\"124 1\",\"pages\":\"46:1-46:26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3534602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3534602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SunBox: Screen-to-Camera Communication with Ambient Light
A recent development in wireless communication is the use of optical shutters and smartphone cameras to create optical links solely from ambient light . At the transmitter, a liquid crystal display (LCD) modulates ambient light by changing its level of transparency. At the receiver, a smartphone camera decodes the optical pattern. This LCD-to-camera link requires low-power levels at the transmitter, and it is easy to deploy because it does not require modifying the existing lighting infrastructure. The system, however, provides a low data rate, of just a few tens of bps. This occurs because the LCDs used in the state-of-the-art are slow single-pixel transmitters. To overcome this limitation, we introduce a novel multi-pixel display. Our display is similar to a simple screen, but instead of using embedded LEDs to radiate information, it uses only the surrounding ambient light. We build a prototype, called SunBox, and evaluate it indoors and outdoors with both, artificial and natural ambient light. Our results show that SunBox can achieve a throughput between 2kbps and 10kbps using a low-end smartphone camera with just 30FPS. To the best of our knowledge, this is the first screen-to-camera system that works solely with ambient light. ;