Corrado Sciancalepore, Federica Bondioli, Massimo Messori, Daniel Milanese
{"title":"三维高载荷纳米复合材料结构的打印与表征","authors":"Corrado Sciancalepore, Federica Bondioli, Massimo Messori, Daniel Milanese","doi":"10.1002/mdp2.256","DOIUrl":null,"url":null,"abstract":"<p>This study demonstrates the feasibility of fabricating by additive manufacturing composite objects based on acrylic hybrid photocurable formulations, containing 45% by weight of silica nanoparticles, with an average size of about 30 nm. A commercial stereolithography apparatus was used to selectively cure, layer by layer, the high-loaded acrylic resin. The presence of the filler determines an increase in the physical and mechanical properties of the samples that become significantly stiffer and stronger than the pristine matrix. Dynamic mechanical analysis performed on the printed samples gave promising results for the use of developed formulation in the realization of three-dimensional (3D) polymeric structures with improved mechanical properties.</p>","PeriodicalId":100886,"journal":{"name":"Material Design & Processing Communications","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/mdp2.256","citationCount":"2","resultStr":"{\"title\":\"Printing and characterization of three-dimensional high-loaded nanocomposites structures\",\"authors\":\"Corrado Sciancalepore, Federica Bondioli, Massimo Messori, Daniel Milanese\",\"doi\":\"10.1002/mdp2.256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study demonstrates the feasibility of fabricating by additive manufacturing composite objects based on acrylic hybrid photocurable formulations, containing 45% by weight of silica nanoparticles, with an average size of about 30 nm. A commercial stereolithography apparatus was used to selectively cure, layer by layer, the high-loaded acrylic resin. The presence of the filler determines an increase in the physical and mechanical properties of the samples that become significantly stiffer and stronger than the pristine matrix. Dynamic mechanical analysis performed on the printed samples gave promising results for the use of developed formulation in the realization of three-dimensional (3D) polymeric structures with improved mechanical properties.</p>\",\"PeriodicalId\":100886,\"journal\":{\"name\":\"Material Design & Processing Communications\",\"volume\":\"3 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/mdp2.256\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Design & Processing Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Printing and characterization of three-dimensional high-loaded nanocomposites structures
This study demonstrates the feasibility of fabricating by additive manufacturing composite objects based on acrylic hybrid photocurable formulations, containing 45% by weight of silica nanoparticles, with an average size of about 30 nm. A commercial stereolithography apparatus was used to selectively cure, layer by layer, the high-loaded acrylic resin. The presence of the filler determines an increase in the physical and mechanical properties of the samples that become significantly stiffer and stronger than the pristine matrix. Dynamic mechanical analysis performed on the printed samples gave promising results for the use of developed formulation in the realization of three-dimensional (3D) polymeric structures with improved mechanical properties.