工业机器人的RobotML:操作场景的设计与仿真

Selma Kchir, S. Dhouib, Jérémie Tatibouet, Baptiste Gradoussoff, Max Da Silva Simoes
{"title":"工业机器人的RobotML:操作场景的设计与仿真","authors":"Selma Kchir, S. Dhouib, Jérémie Tatibouet, Baptiste Gradoussoff, Max Da Silva Simoes","doi":"10.1109/ETFA.2016.7733727","DOIUrl":null,"url":null,"abstract":"Robotic systems are a typical example of complex systems. Their design involves a combination of different technologies, requiring a multi-disciplinary approach. This is particularly challenging when a robotic system is required to interact either with humans or other entities within its environment. To tackle this complexity, we propose a design and validation approach based on MDE (Model-Driven Engineering) principles for industrial manipulators. We propose an extension of RobotML for manipulation, a modelling environment based on the Papyrus tool, which was developed specifically for the robotics domain. The extension is aiming to model a complete robotic setting, including protagonists, objects, their properties, the interactions between them, the services provided by the robots, and the actions they can perform. Then we propose to use model execution techniques to validate the design models. We illustrate our approach on a robotic scenario dedicated to the Sybot collaborative robot.","PeriodicalId":6483,"journal":{"name":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"RobotML for industrial robots: Design and simulation of manipulation scenarios\",\"authors\":\"Selma Kchir, S. Dhouib, Jérémie Tatibouet, Baptiste Gradoussoff, Max Da Silva Simoes\",\"doi\":\"10.1109/ETFA.2016.7733727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic systems are a typical example of complex systems. Their design involves a combination of different technologies, requiring a multi-disciplinary approach. This is particularly challenging when a robotic system is required to interact either with humans or other entities within its environment. To tackle this complexity, we propose a design and validation approach based on MDE (Model-Driven Engineering) principles for industrial manipulators. We propose an extension of RobotML for manipulation, a modelling environment based on the Papyrus tool, which was developed specifically for the robotics domain. The extension is aiming to model a complete robotic setting, including protagonists, objects, their properties, the interactions between them, the services provided by the robots, and the actions they can perform. Then we propose to use model execution techniques to validate the design models. We illustrate our approach on a robotic scenario dedicated to the Sybot collaborative robot.\",\"PeriodicalId\":6483,\"journal\":{\"name\":\"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2016.7733727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2016.7733727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

机器人系统是复杂系统的一个典型例子。它们的设计涉及不同技术的组合,需要多学科的方法。当机器人系统需要与人类或其环境中的其他实体进行交互时,这尤其具有挑战性。为了解决这种复杂性,我们提出了一种基于MDE(模型驱动工程)原理的工业机械手设计和验证方法。我们提出了一个扩展的RobotML操作,一个基于Papyrus工具的建模环境,这是专门为机器人领域开发的。该扩展旨在模拟一个完整的机器人设置,包括主角、对象、它们的属性、它们之间的交互、机器人提供的服务以及它们可以执行的动作。然后,我们建议使用模型执行技术来验证设计模型。我们在一个专门用于Sybot协作机器人的机器人场景中说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RobotML for industrial robots: Design and simulation of manipulation scenarios
Robotic systems are a typical example of complex systems. Their design involves a combination of different technologies, requiring a multi-disciplinary approach. This is particularly challenging when a robotic system is required to interact either with humans or other entities within its environment. To tackle this complexity, we propose a design and validation approach based on MDE (Model-Driven Engineering) principles for industrial manipulators. We propose an extension of RobotML for manipulation, a modelling environment based on the Papyrus tool, which was developed specifically for the robotics domain. The extension is aiming to model a complete robotic setting, including protagonists, objects, their properties, the interactions between them, the services provided by the robots, and the actions they can perform. Then we propose to use model execution techniques to validate the design models. We illustrate our approach on a robotic scenario dedicated to the Sybot collaborative robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信