Aristide Gumyusenge, A. Melianas, S. Keene, A. Salleo
{"title":"有机神经形态器件的材料策略","authors":"Aristide Gumyusenge, A. Melianas, S. Keene, A. Salleo","doi":"10.1146/ANNUREV-MATSCI-080619-111402","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing is becoming increasingly prominent as artificial intelligence (AI) facilitates progressively seamless interaction between humans and machines. The conventional von Neumann architecture and complementary metal-oxide-semiconductor transistor scaling are unable to meet the highly demanding computational density and energy efficiency requirements of AI. Neuromorphic computing aims to address these challenges by using brain-like computing architectures and novel synaptic memories that coallocate information storage and computation, thereby enabling low latency at high energy efficiency and high memory density. Though various emerging memory devices have been extensively studied to emulate the functionality of biological synapses, there is currently no material/device system that encompasses both the needed metrics for high-performance neuromorphic computing and the required biocompatibility for potential body-computer integration. In this review, we aim to equip the reader with general design principles and materials requirements for realizing high-performance organic neuromorphic devices. We use instructive examples from recent literature to discuss each requirement, illustrating the challenges as well as future research opportunities. Though organic devices still face many challenges to become major players in neuromorphic computing, mostly due to their lack of compliance with back-end-of-line processes required for integration with digital logic, we propose that their biocompatibility and mechanical conformability give them an advantage for creating adaptive biointerfaces, brain-machine interfaces, and biology-inspired prosthetics.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Materials Strategies for Organic Neuromorphic Devices\",\"authors\":\"Aristide Gumyusenge, A. Melianas, S. Keene, A. Salleo\",\"doi\":\"10.1146/ANNUREV-MATSCI-080619-111402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic computing is becoming increasingly prominent as artificial intelligence (AI) facilitates progressively seamless interaction between humans and machines. The conventional von Neumann architecture and complementary metal-oxide-semiconductor transistor scaling are unable to meet the highly demanding computational density and energy efficiency requirements of AI. Neuromorphic computing aims to address these challenges by using brain-like computing architectures and novel synaptic memories that coallocate information storage and computation, thereby enabling low latency at high energy efficiency and high memory density. Though various emerging memory devices have been extensively studied to emulate the functionality of biological synapses, there is currently no material/device system that encompasses both the needed metrics for high-performance neuromorphic computing and the required biocompatibility for potential body-computer integration. In this review, we aim to equip the reader with general design principles and materials requirements for realizing high-performance organic neuromorphic devices. We use instructive examples from recent literature to discuss each requirement, illustrating the challenges as well as future research opportunities. Though organic devices still face many challenges to become major players in neuromorphic computing, mostly due to their lack of compliance with back-end-of-line processes required for integration with digital logic, we propose that their biocompatibility and mechanical conformability give them an advantage for creating adaptive biointerfaces, brain-machine interfaces, and biology-inspired prosthetics.\",\"PeriodicalId\":8055,\"journal\":{\"name\":\"Annual Review of Materials Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1146/ANNUREV-MATSCI-080619-111402\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/ANNUREV-MATSCI-080619-111402","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Materials Strategies for Organic Neuromorphic Devices
Neuromorphic computing is becoming increasingly prominent as artificial intelligence (AI) facilitates progressively seamless interaction between humans and machines. The conventional von Neumann architecture and complementary metal-oxide-semiconductor transistor scaling are unable to meet the highly demanding computational density and energy efficiency requirements of AI. Neuromorphic computing aims to address these challenges by using brain-like computing architectures and novel synaptic memories that coallocate information storage and computation, thereby enabling low latency at high energy efficiency and high memory density. Though various emerging memory devices have been extensively studied to emulate the functionality of biological synapses, there is currently no material/device system that encompasses both the needed metrics for high-performance neuromorphic computing and the required biocompatibility for potential body-computer integration. In this review, we aim to equip the reader with general design principles and materials requirements for realizing high-performance organic neuromorphic devices. We use instructive examples from recent literature to discuss each requirement, illustrating the challenges as well as future research opportunities. Though organic devices still face many challenges to become major players in neuromorphic computing, mostly due to their lack of compliance with back-end-of-line processes required for integration with digital logic, we propose that their biocompatibility and mechanical conformability give them an advantage for creating adaptive biointerfaces, brain-machine interfaces, and biology-inspired prosthetics.
期刊介绍:
The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.