正则泛局部有限群

S. Shelah
{"title":"正则泛局部有限群","authors":"S. Shelah","doi":"10.4171/rsmup/117","DOIUrl":null,"url":null,"abstract":"We prove that for lambda = beta_omega or just lambda strong limit singular of cofinality aleph_0, if there is a universal member in the class K^lf_lambda of locally finite groups of cardinality lambda, then there is a canonical one (parallel to special models for elementary classes, which is the replacement of universal homogeneous ones and saturated ones in cardinals lambda = lambda^<lambda). For this, we rely on the existence of enough indecomposable such groups, as proved in\"Density of indecomposable locally finite groups\". We also more generally deal with the existence of universal members in general classes for such cardinals.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canonical universal locally finite groups\",\"authors\":\"S. Shelah\",\"doi\":\"10.4171/rsmup/117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for lambda = beta_omega or just lambda strong limit singular of cofinality aleph_0, if there is a universal member in the class K^lf_lambda of locally finite groups of cardinality lambda, then there is a canonical one (parallel to special models for elementary classes, which is the replacement of universal homogeneous ones and saturated ones in cardinals lambda = lambda^<lambda). For this, we rely on the existence of enough indecomposable such groups, as proved in\\\"Density of indecomposable locally finite groups\\\". We also more generally deal with the existence of universal members in general classes for such cardinals.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证明了对于λ = β α或λ强极限奇异的余度α _0,如果在λ的局部有限群的K^ lf_λ类中存在一个普适成员,则存在一个正则成员(平行于初等类的特殊模型,它是替换λ = λ ^< λ的普适齐次群和饱和群)。为此,我们依赖于“不可分解局部有限群的密度”中所证明的足够的不可分解群的存在。我们还更一般地处理这类基数的一般类中普遍成员的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical universal locally finite groups
We prove that for lambda = beta_omega or just lambda strong limit singular of cofinality aleph_0, if there is a universal member in the class K^lf_lambda of locally finite groups of cardinality lambda, then there is a canonical one (parallel to special models for elementary classes, which is the replacement of universal homogeneous ones and saturated ones in cardinals lambda = lambda^
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信