新型膨胀装置和R404A替代制冷剂的开窗空调机组试验评价

IF 0.8 Q4 THERMODYNAMICS
A. Al-Sayyab
{"title":"新型膨胀装置和R404A替代制冷剂的开窗空调机组试验评价","authors":"A. Al-Sayyab","doi":"10.1142/s2010132520500315","DOIUrl":null,"url":null,"abstract":"In this study, the performance of a window-type air-conditioning unit with an alternative, ozone-friendly refrigerant was enhanced by incorporating a nozzle instead of a capillary tube as an expansion device. An experimental evaluation was adopted on a 1.5 RT window-type air-conditioning unit with a controlled environmental zone. According to operating conditions, an ANSYS-Fluent program was used to predict an appropriate nozzle size for a lower pressure ratio. The refrigeration cycle model was simulated using the Engineering Equation Solver (EES).27 The results showed that using a nozzle of 30[Formula: see text]mm length and inner and outer diameters of 9 and 2[Formula: see text]mm, respectively instead of the capillary tube with R404A reduces compressor power consumption by 7.7% and increases the coefficient of performance (COP) by 7.4%.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":"601 1","pages":"2050031"},"PeriodicalIF":0.8000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental Evaluation of Window-Type Air-Conditioning Unit with New Expansion Device and R404A Alternative Refrigerant\",\"authors\":\"A. Al-Sayyab\",\"doi\":\"10.1142/s2010132520500315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the performance of a window-type air-conditioning unit with an alternative, ozone-friendly refrigerant was enhanced by incorporating a nozzle instead of a capillary tube as an expansion device. An experimental evaluation was adopted on a 1.5 RT window-type air-conditioning unit with a controlled environmental zone. According to operating conditions, an ANSYS-Fluent program was used to predict an appropriate nozzle size for a lower pressure ratio. The refrigeration cycle model was simulated using the Engineering Equation Solver (EES).27 The results showed that using a nozzle of 30[Formula: see text]mm length and inner and outer diameters of 9 and 2[Formula: see text]mm, respectively instead of the capillary tube with R404A reduces compressor power consumption by 7.7% and increases the coefficient of performance (COP) by 7.4%.\",\"PeriodicalId\":13757,\"journal\":{\"name\":\"International Journal of Air-conditioning and Refrigeration\",\"volume\":\"601 1\",\"pages\":\"2050031\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Air-conditioning and Refrigeration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010132520500315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Air-conditioning and Refrigeration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010132520500315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 2

摘要

在本研究中,采用替代臭氧友好型制冷剂的开窗式空调机组的性能通过将喷嘴代替毛细管作为膨胀装置而得到增强。采用环境控制区1.5 RT开窗式空调机组进行试验评价。根据实际工况,利用ANSYS-Fluent软件对较低压力比下的喷嘴尺寸进行预测。利用工程方程求解器(EES)对制冷循环模型进行了仿真结果表明,采用长度为30 mm、内径为9 mm、外径为2 mm的喷嘴代替R404A的毛细管,可使压缩机功耗降低7.7%,性能系数(COP)提高7.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Evaluation of Window-Type Air-Conditioning Unit with New Expansion Device and R404A Alternative Refrigerant
In this study, the performance of a window-type air-conditioning unit with an alternative, ozone-friendly refrigerant was enhanced by incorporating a nozzle instead of a capillary tube as an expansion device. An experimental evaluation was adopted on a 1.5 RT window-type air-conditioning unit with a controlled environmental zone. According to operating conditions, an ANSYS-Fluent program was used to predict an appropriate nozzle size for a lower pressure ratio. The refrigeration cycle model was simulated using the Engineering Equation Solver (EES).27 The results showed that using a nozzle of 30[Formula: see text]mm length and inner and outer diameters of 9 and 2[Formula: see text]mm, respectively instead of the capillary tube with R404A reduces compressor power consumption by 7.7% and increases the coefficient of performance (COP) by 7.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
10.00%
发文量
0
期刊介绍: As the only international journal in the field of air-conditioning and refrigeration in Asia, IJACR reports researches on the equipments for controlling indoor environment and cooling/refrigeration. It includes broad range of applications and underlying theories including fluid dynamics, thermodynamics, heat transfer, and nano/bio-related technologies. In addition, it covers future energy technologies, such as fuel cell, wind turbine, solar cell/heat, geothermal energy and etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信