相对论-几何纠缠:纠缠粒子系统的对称群

Q4 Mathematics
A. Ungar
{"title":"相对论-几何纠缠:纠缠粒子系统的对称群","authors":"A. Ungar","doi":"10.7546/GIQ-20-2019-266-284","DOIUrl":null,"url":null,"abstract":"It is known that entangled particles involve Lorentz symmetry violation. Hence, we pay attention to Lorentz transformations of signature $(m,n)$ for all positive integers $m$ and $n$. We show that these form the symmetry groups by which systems of $m$ entangled $n$-dimensional particles can be understood, just as the common Lorentz group of signature $(1,3)$ forms the symmetry group by which Einstein's special theory of relativity is understood. A novel, unified parametric realization of the Lorentz transformations of any signature $(m,n)$ shakes down the underlying matrix algebra into elegant and transparent results.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"65 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relativistic-Geometric Entanglement: Symmetry Groups of Systems of Entangled Particles\",\"authors\":\"A. Ungar\",\"doi\":\"10.7546/GIQ-20-2019-266-284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that entangled particles involve Lorentz symmetry violation. Hence, we pay attention to Lorentz transformations of signature $(m,n)$ for all positive integers $m$ and $n$. We show that these form the symmetry groups by which systems of $m$ entangled $n$-dimensional particles can be understood, just as the common Lorentz group of signature $(1,3)$ forms the symmetry group by which Einstein's special theory of relativity is understood. A novel, unified parametric realization of the Lorentz transformations of any signature $(m,n)$ shakes down the underlying matrix algebra into elegant and transparent results.\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"65 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/GIQ-20-2019-266-284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/GIQ-20-2019-266-284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

已知纠缠粒子涉及洛伦兹对称破坏。因此,我们关注了所有正整数$m$和$n$的签名$(m,n)$的洛伦兹变换。我们证明了这些形成了对称群,通过这些对称群可以理解$m$纠缠$n$维粒子的系统,就像签名$(1,3)$的常见洛伦兹群形成了对称群,通过这些对称群可以理解爱因斯坦的狭义相对论。一个新的,统一的参数实现的洛伦兹变换的任何签名$(m,n)$将底层的矩阵代数变成优雅和透明的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relativistic-Geometric Entanglement: Symmetry Groups of Systems of Entangled Particles
It is known that entangled particles involve Lorentz symmetry violation. Hence, we pay attention to Lorentz transformations of signature $(m,n)$ for all positive integers $m$ and $n$. We show that these form the symmetry groups by which systems of $m$ entangled $n$-dimensional particles can be understood, just as the common Lorentz group of signature $(1,3)$ forms the symmetry group by which Einstein's special theory of relativity is understood. A novel, unified parametric realization of the Lorentz transformations of any signature $(m,n)$ shakes down the underlying matrix algebra into elegant and transparent results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信