{"title":"三维Navier-Stokes方程的端点正则性准则","authors":"Zhouyu Li, D. Zhou","doi":"10.4310/DPDE.2021.V18.N1.A5","DOIUrl":null,"url":null,"abstract":"Let $(u, \\pi)$ with $u=(u_1,u_2,u_3)$ be a suitable weak solution of the three dimensional Navier-Stokes equations in $\\mathbb{R}^3\\times [0, T]$. Denote by $\\dot{\\mathcal{B}}^{-1}_{\\infty,\\infty}$ the closure of $C_0^\\infty$ in $\\dot{B}^{-1}_{\\infty,\\infty}$. We prove that if $u\\in L^\\infty(0, T; \\dot{B}^{-1}_{\\infty,\\infty})$, $u(x, T)\\in \\dot{\\mathcal{B}}^{-1}_{\\infty,\\infty})$, and $u_3\\in L^\\infty(0, T; L^{3, \\infty})$ or $u_3\\in L^\\infty(0, T; \\dot{B}^{-1+3/p}_{p, q})$ with $3<p, q< \\infty$, then $u$ is smooth in $\\mathbb{R}^3\\times [0, T]$. Our result improves a previous result established by Wang and Zhang [Sci. China Math. 60, 637-650 (2017)].","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"296 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On endpoint regularity criterion of the 3D Navier–Stokes equations\",\"authors\":\"Zhouyu Li, D. Zhou\",\"doi\":\"10.4310/DPDE.2021.V18.N1.A5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(u, \\\\pi)$ with $u=(u_1,u_2,u_3)$ be a suitable weak solution of the three dimensional Navier-Stokes equations in $\\\\mathbb{R}^3\\\\times [0, T]$. Denote by $\\\\dot{\\\\mathcal{B}}^{-1}_{\\\\infty,\\\\infty}$ the closure of $C_0^\\\\infty$ in $\\\\dot{B}^{-1}_{\\\\infty,\\\\infty}$. We prove that if $u\\\\in L^\\\\infty(0, T; \\\\dot{B}^{-1}_{\\\\infty,\\\\infty})$, $u(x, T)\\\\in \\\\dot{\\\\mathcal{B}}^{-1}_{\\\\infty,\\\\infty})$, and $u_3\\\\in L^\\\\infty(0, T; L^{3, \\\\infty})$ or $u_3\\\\in L^\\\\infty(0, T; \\\\dot{B}^{-1+3/p}_{p, q})$ with $3<p, q< \\\\infty$, then $u$ is smooth in $\\\\mathbb{R}^3\\\\times [0, T]$. Our result improves a previous result established by Wang and Zhang [Sci. China Math. 60, 637-650 (2017)].\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"296 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/DPDE.2021.V18.N1.A5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/DPDE.2021.V18.N1.A5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On endpoint regularity criterion of the 3D Navier–Stokes equations
Let $(u, \pi)$ with $u=(u_1,u_2,u_3)$ be a suitable weak solution of the three dimensional Navier-Stokes equations in $\mathbb{R}^3\times [0, T]$. Denote by $\dot{\mathcal{B}}^{-1}_{\infty,\infty}$ the closure of $C_0^\infty$ in $\dot{B}^{-1}_{\infty,\infty}$. We prove that if $u\in L^\infty(0, T; \dot{B}^{-1}_{\infty,\infty})$, $u(x, T)\in \dot{\mathcal{B}}^{-1}_{\infty,\infty})$, and $u_3\in L^\infty(0, T; L^{3, \infty})$ or $u_3\in L^\infty(0, T; \dot{B}^{-1+3/p}_{p, q})$ with $3