根据亚里士多德的不可能论证的无限回归论证:《论恺罗》300a - 30 - b

IF 0.1 0 PHILOSOPHY
M. Duncombe
{"title":"根据亚里士多德的不可能论证的无限回归论证:《论恺罗》300a - 30 - b","authors":"M. Duncombe","doi":"10.1515/rhiz-2022-0015","DOIUrl":null,"url":null,"abstract":"\n Infinite regress arguments are a powerful tool in Aristotle, but this style of argument has received relatively little attention. Improving our understanding of infinite regress arguments has become pressing since recent scholars have pointed out that it is not clear whether Aristotle’s infinite regress arguments are, in general, effective or indeed what the logical structure of these arguments is. One obvious approach would be to hold that Aristotle takes infinite regress arguments to be per impossibile arguments, which derive an infinite sequence. Due to his finitism, Aristotle then rejects such a sequence as impossible. This paper argues that this obvious approach does not work, even for its most amenable cases. The paper argues instead that infinite regress arguments involve domain-specific infinities, and so there is not a general finitism which underpins infinite regress arguments in Aristotle, but rather domain-specific reasons that there cannot be an infinite number of entities in each domain in which Aristotle invokes an infinite regress argument.","PeriodicalId":40571,"journal":{"name":"Rhizomata-A Journal for Ancient Philosophy and Science","volume":"46 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite Regress Arguments as <b>\\n <i>per impossibile</i>\\n </b> Arguments in Aristotle: <b>\\n <i>De Caelo</i>\\n </b> 300<b>\\n <sup>a</sup>\\n </b>30–<b>\\n <sup>b</sup>\\n \",\"authors\":\"M. Duncombe\",\"doi\":\"10.1515/rhiz-2022-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Infinite regress arguments are a powerful tool in Aristotle, but this style of argument has received relatively little attention. Improving our understanding of infinite regress arguments has become pressing since recent scholars have pointed out that it is not clear whether Aristotle’s infinite regress arguments are, in general, effective or indeed what the logical structure of these arguments is. One obvious approach would be to hold that Aristotle takes infinite regress arguments to be per impossibile arguments, which derive an infinite sequence. Due to his finitism, Aristotle then rejects such a sequence as impossible. This paper argues that this obvious approach does not work, even for its most amenable cases. The paper argues instead that infinite regress arguments involve domain-specific infinities, and so there is not a general finitism which underpins infinite regress arguments in Aristotle, but rather domain-specific reasons that there cannot be an infinite number of entities in each domain in which Aristotle invokes an infinite regress argument.\",\"PeriodicalId\":40571,\"journal\":{\"name\":\"Rhizomata-A Journal for Ancient Philosophy and Science\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rhizomata-A Journal for Ancient Philosophy and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rhiz-2022-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PHILOSOPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhizomata-A Journal for Ancient Philosophy and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rhiz-2022-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0

摘要

无限回归论证是亚里士多德强有力的工具,但这种论证风格相对较少受到关注。最近有学者指出,我们并不清楚亚里士多德的无限回归论证总体上是否有效,也不清楚这些论证的逻辑结构是什么,因此,提高我们对无限回归论证的理解变得迫在眉睫。一种明显的方法是认为亚里士多德把无限回归论证看作是每一个不可能论证,它推导出一个无限序列。由于他的有限主义,亚里士多德拒绝了这样一个不可能的序列。本文认为,这种显而易见的方法并不奏效,即使在最容易接受的情况下也是如此。这篇论文认为,无限回归论证涉及特定领域的无穷大,因此在亚里士多德的无限回归论证中,并不存在支撑无限回归论证的一般有限性,而是存在特定领域的原因,即在亚里士多德调用无限回归论证的每个领域中不可能有无限数量的实体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite Regress Arguments as per impossibile Arguments in Aristotle: De Caelo 300 a 30– b
Infinite regress arguments are a powerful tool in Aristotle, but this style of argument has received relatively little attention. Improving our understanding of infinite regress arguments has become pressing since recent scholars have pointed out that it is not clear whether Aristotle’s infinite regress arguments are, in general, effective or indeed what the logical structure of these arguments is. One obvious approach would be to hold that Aristotle takes infinite regress arguments to be per impossibile arguments, which derive an infinite sequence. Due to his finitism, Aristotle then rejects such a sequence as impossible. This paper argues that this obvious approach does not work, even for its most amenable cases. The paper argues instead that infinite regress arguments involve domain-specific infinities, and so there is not a general finitism which underpins infinite regress arguments in Aristotle, but rather domain-specific reasons that there cannot be an infinite number of entities in each domain in which Aristotle invokes an infinite regress argument.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信