传感器日志数据查询的二维规则语言:框架和用例

Time Pub Date : 2019-01-01 DOI:10.4230/LIPIcs.TIME.2019.7
S. Brandt, Diego Calvanese, E. G. Kalayci, R. Kontchakov, Benjamin Mörzinger, V. Ryzhikov, Guohui Xiao, M. Zakharyaschev
{"title":"传感器日志数据查询的二维规则语言:框架和用例","authors":"S. Brandt, Diego Calvanese, E. G. Kalayci, R. Kontchakov, Benjamin Mörzinger, V. Ryzhikov, Guohui Xiao, M. Zakharyaschev","doi":"10.4230/LIPIcs.TIME.2019.7","DOIUrl":null,"url":null,"abstract":"Motivated by two industrial use cases that involve detecting events of interest in (asynchronous) time series from sensors in manufacturing rigs and gas turbines, we design an expressive rule language DslD equipped with interval aggregate functions (such as weighted average over a time interval), Allen’s interval relations and various metric constructs. We demonstrate how to model events in the uses cases in terms of DslD programs. We show that answering DslD queries in our use cases can be reduced to evaluating SQL queries. Our experiments with the use cases, carried out on the Apache Spark system, show that such SQL queries scale well on large real-world datasets. 2012 ACM Subject Classification Computing methodologies → Ontology engineering; Computing methodologies → Temporal reasoning; Theory of computation → Modal and temporal logics","PeriodicalId":75226,"journal":{"name":"Time","volume":"59 4 1","pages":"7:1-7:15"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Two-Dimensional Rule Language for Querying Sensor Log Data: A Framework and Use Cases\",\"authors\":\"S. Brandt, Diego Calvanese, E. G. Kalayci, R. Kontchakov, Benjamin Mörzinger, V. Ryzhikov, Guohui Xiao, M. Zakharyaschev\",\"doi\":\"10.4230/LIPIcs.TIME.2019.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by two industrial use cases that involve detecting events of interest in (asynchronous) time series from sensors in manufacturing rigs and gas turbines, we design an expressive rule language DslD equipped with interval aggregate functions (such as weighted average over a time interval), Allen’s interval relations and various metric constructs. We demonstrate how to model events in the uses cases in terms of DslD programs. We show that answering DslD queries in our use cases can be reduced to evaluating SQL queries. Our experiments with the use cases, carried out on the Apache Spark system, show that such SQL queries scale well on large real-world datasets. 2012 ACM Subject Classification Computing methodologies → Ontology engineering; Computing methodologies → Temporal reasoning; Theory of computation → Modal and temporal logics\",\"PeriodicalId\":75226,\"journal\":{\"name\":\"Time\",\"volume\":\"59 4 1\",\"pages\":\"7:1-7:15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Time\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TIME.2019.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TIME.2019.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

受两个工业用例的启发,涉及检测来自制造钻机和燃气轮机传感器的(异步)时间序列中感兴趣的事件,我们设计了一种表达性规则语言DslD,该语言配备了区间聚合函数(如时间间隔上的加权平均值)、Allen的区间关系和各种度量结构。我们将演示如何根据dsl程序对用例中的事件建模。我们展示了在我们的用例中回答dsl查询可以简化为评估SQL查询。我们在Apache Spark系统上进行的用例实验表明,这样的SQL查询在大型真实数据集上可以很好地扩展。2012 ACM主题分类计算方法→本体工程;计算方法→时间推理;计算理论→模态和时间逻辑
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Dimensional Rule Language for Querying Sensor Log Data: A Framework and Use Cases
Motivated by two industrial use cases that involve detecting events of interest in (asynchronous) time series from sensors in manufacturing rigs and gas turbines, we design an expressive rule language DslD equipped with interval aggregate functions (such as weighted average over a time interval), Allen’s interval relations and various metric constructs. We demonstrate how to model events in the uses cases in terms of DslD programs. We show that answering DslD queries in our use cases can be reduced to evaluating SQL queries. Our experiments with the use cases, carried out on the Apache Spark system, show that such SQL queries scale well on large real-world datasets. 2012 ACM Subject Classification Computing methodologies → Ontology engineering; Computing methodologies → Temporal reasoning; Theory of computation → Modal and temporal logics
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信