基于主成分因子得分的对象排序次最优性的注记

Sudhanshu K. Mishra
{"title":"基于主成分因子得分的对象排序次最优性的注记","authors":"Sudhanshu K. Mishra","doi":"10.2139/ssrn.1321369","DOIUrl":null,"url":null,"abstract":"This paper demonstrates that if we intend to optimally rank order n objects (candidates) each of which has m attributes or rank scores awarded by m evaluators, then the ordinal ranking of objects by the conventional principal component based factor scores turns out to be suboptimal. Three numerical examples have been provided to show that principal component based rankings do not necessarily maximize the sum of squared correlation coefficients between the individual m rank scores arrays, X(n,m), and overall rank scores array, Z(n).","PeriodicalId":10688,"journal":{"name":"Computing Technologies eJournal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Note on the Sub-Optimality of Rank Ordering of Objects on the Basis of the Leading Principal Component Factor Scores\",\"authors\":\"Sudhanshu K. Mishra\",\"doi\":\"10.2139/ssrn.1321369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates that if we intend to optimally rank order n objects (candidates) each of which has m attributes or rank scores awarded by m evaluators, then the ordinal ranking of objects by the conventional principal component based factor scores turns out to be suboptimal. Three numerical examples have been provided to show that principal component based rankings do not necessarily maximize the sum of squared correlation coefficients between the individual m rank scores arrays, X(n,m), and overall rank scores array, Z(n).\",\"PeriodicalId\":10688,\"journal\":{\"name\":\"Computing Technologies eJournal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing Technologies eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1321369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing Technologies eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1321369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文证明,如果我们打算对n个对象(候选对象)进行最优排序,每个对象(候选对象)有m个属性或由m个评估者授予的排名分数,那么通过传统的基于主成分的因子分数对对象进行有序排序将是次优的。已经提供了三个数值示例来表明,基于主成分的排名不一定最大化单个m个排名分数数组X(n,m)和总体排名分数数组Z(n)之间的平方相关系数之和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on the Sub-Optimality of Rank Ordering of Objects on the Basis of the Leading Principal Component Factor Scores
This paper demonstrates that if we intend to optimally rank order n objects (candidates) each of which has m attributes or rank scores awarded by m evaluators, then the ordinal ranking of objects by the conventional principal component based factor scores turns out to be suboptimal. Three numerical examples have been provided to show that principal component based rankings do not necessarily maximize the sum of squared correlation coefficients between the individual m rank scores arrays, X(n,m), and overall rank scores array, Z(n).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信