基于遗传算法的极限学习机训练算法研究

Shaojian Song, Yao Wang, Xiaofeng Lin, Qingbao Huang
{"title":"基于遗传算法的极限学习机训练算法研究","authors":"Shaojian Song, Yao Wang, Xiaofeng Lin, Qingbao Huang","doi":"10.1109/IHMSC.2015.156","DOIUrl":null,"url":null,"abstract":"In view of the prediction accuracy of Extreme Learning Machine's (ELM) is affected by its input weights and hidden layer neurons thresholds, an improved training method for ELM with Genetic Algorithms (GA-ELM) is proposed in this paper. In GA-ELM, after selection, crossover and mutation of Genetic Algorithm (GA), we will get the optimal weights and thresholds, in initial which are randomly obtained by ELM, then to enhance the generalization performance of ELM. The simulation results show that, compared with other algorithms, the GA-ELM has better prediction accuracy.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"126 1","pages":"132-135"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Study on GA-based Training Algorithm for Extreme Learning Machine\",\"authors\":\"Shaojian Song, Yao Wang, Xiaofeng Lin, Qingbao Huang\",\"doi\":\"10.1109/IHMSC.2015.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the prediction accuracy of Extreme Learning Machine's (ELM) is affected by its input weights and hidden layer neurons thresholds, an improved training method for ELM with Genetic Algorithms (GA-ELM) is proposed in this paper. In GA-ELM, after selection, crossover and mutation of Genetic Algorithm (GA), we will get the optimal weights and thresholds, in initial which are randomly obtained by ELM, then to enhance the generalization performance of ELM. The simulation results show that, compared with other algorithms, the GA-ELM has better prediction accuracy.\",\"PeriodicalId\":6592,\"journal\":{\"name\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"126 1\",\"pages\":\"132-135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2015.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

针对极限学习机(ELM)的预测精度受其输入权值和隐层神经元阈值的影响,提出了一种基于遗传算法的极限学习机(GA-ELM)改进训练方法。在GA-ELM中,经过遗传算法(GA)的选择、交叉和变异,得到最优权值和阈值,初始值由ELM随机获得,从而提高ELM的泛化性能。仿真结果表明,与其他算法相比,GA-ELM具有更好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on GA-based Training Algorithm for Extreme Learning Machine
In view of the prediction accuracy of Extreme Learning Machine's (ELM) is affected by its input weights and hidden layer neurons thresholds, an improved training method for ELM with Genetic Algorithms (GA-ELM) is proposed in this paper. In GA-ELM, after selection, crossover and mutation of Genetic Algorithm (GA), we will get the optimal weights and thresholds, in initial which are randomly obtained by ELM, then to enhance the generalization performance of ELM. The simulation results show that, compared with other algorithms, the GA-ELM has better prediction accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信