Shivam Shreevastava, Shivani Singh, A. K. Tiwari, T. Som
{"title":"基于不同类比和拉普拉斯求和算子的直觉模糊粗糙属性选择","authors":"Shivam Shreevastava, Shivani Singh, A. K. Tiwari, T. Som","doi":"10.22111/IJFS.2021.6212","DOIUrl":null,"url":null,"abstract":"In real-world data deluge, due to insignificant information and high dimension, irrelevant and redundant attributes reduce the ability of experts both in predictive accuracy and speed, respectively. Attribute selection is the notion of selecting those attributes that are essential as well as enough to specify the target knowledge preferably. Fuzzy rough set-based approaches play a crucial role in selecting relevant and less redundant attributes from a high-dimensional dataset. Intuitionistic fuzzy set-based approaches can handle uncertainty as it gives an additional degree of freedom when compared to fuzzy approaches. So, it has a more flexible and practical ability to deal with vagueness and noise available in the information system. In this paper, we introduce two new robust approaches for attribute selection based on intuitionistic fuzzy rough set theory using the concepts of Different Classes ratio and Laplace Summation operator. Firstly, Different Classes ratio and Laplace Summation operator based lower andupper approximations are established based on intuitionistic fuzzy rough set concept. Moreover, we present algorithms and illustrative examples for a better understanding of our approaches. Finally, experimental analysis is performed on some real-valued datasets for attribute selection and classification accuracies.","PeriodicalId":54920,"journal":{"name":"Iranian Journal of Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"( 2005-5897) Different classes ratio and Laplace summation operator based intuitionistic fuzzy rough attribute selection\",\"authors\":\"Shivam Shreevastava, Shivani Singh, A. K. Tiwari, T. Som\",\"doi\":\"10.22111/IJFS.2021.6212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In real-world data deluge, due to insignificant information and high dimension, irrelevant and redundant attributes reduce the ability of experts both in predictive accuracy and speed, respectively. Attribute selection is the notion of selecting those attributes that are essential as well as enough to specify the target knowledge preferably. Fuzzy rough set-based approaches play a crucial role in selecting relevant and less redundant attributes from a high-dimensional dataset. Intuitionistic fuzzy set-based approaches can handle uncertainty as it gives an additional degree of freedom when compared to fuzzy approaches. So, it has a more flexible and practical ability to deal with vagueness and noise available in the information system. In this paper, we introduce two new robust approaches for attribute selection based on intuitionistic fuzzy rough set theory using the concepts of Different Classes ratio and Laplace Summation operator. Firstly, Different Classes ratio and Laplace Summation operator based lower andupper approximations are established based on intuitionistic fuzzy rough set concept. Moreover, we present algorithms and illustrative examples for a better understanding of our approaches. Finally, experimental analysis is performed on some real-valued datasets for attribute selection and classification accuracies.\",\"PeriodicalId\":54920,\"journal\":{\"name\":\"Iranian Journal of Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Fuzzy Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.22111/IJFS.2021.6212\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Fuzzy Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.22111/IJFS.2021.6212","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
( 2005-5897) Different classes ratio and Laplace summation operator based intuitionistic fuzzy rough attribute selection
In real-world data deluge, due to insignificant information and high dimension, irrelevant and redundant attributes reduce the ability of experts both in predictive accuracy and speed, respectively. Attribute selection is the notion of selecting those attributes that are essential as well as enough to specify the target knowledge preferably. Fuzzy rough set-based approaches play a crucial role in selecting relevant and less redundant attributes from a high-dimensional dataset. Intuitionistic fuzzy set-based approaches can handle uncertainty as it gives an additional degree of freedom when compared to fuzzy approaches. So, it has a more flexible and practical ability to deal with vagueness and noise available in the information system. In this paper, we introduce two new robust approaches for attribute selection based on intuitionistic fuzzy rough set theory using the concepts of Different Classes ratio and Laplace Summation operator. Firstly, Different Classes ratio and Laplace Summation operator based lower andupper approximations are established based on intuitionistic fuzzy rough set concept. Moreover, we present algorithms and illustrative examples for a better understanding of our approaches. Finally, experimental analysis is performed on some real-valued datasets for attribute selection and classification accuracies.
期刊介绍:
The two-monthly Iranian Journal of Fuzzy Systems (IJFS) aims to provide an international forum for refereed original research works in the theory and applications of fuzzy sets and systems in the areas of foundations, pure mathematics, artificial intelligence, control, robotics, data analysis, data mining, decision making, finance and management, information systems, operations research, pattern recognition and image processing, soft computing and uncertainty modeling.
Manuscripts submitted to the IJFS must be original unpublished work and should not be in consideration for publication elsewhere.