E. D. Torres, J. Silva, Marcello Montillo Provenza, I. A. Lima, Jorge Luiz de Jesus Goulart
{"title":"使用ARIMA模型预测流失率:一个电子商务公司的案例研究","authors":"E. D. Torres, J. Silva, Marcello Montillo Provenza, I. A. Lima, Jorge Luiz de Jesus Goulart","doi":"10.12957/CADEST.2020.55671","DOIUrl":null,"url":null,"abstract":"A taxa de Churn, ou simplesmente Churn, calcula o número de usuários que se desconectam dos serviços de uma empresa em um período de tempo específico. Para alguns setores, esta é uma métrica básica para avaliar o sucesso do negócio, já que apresenta impacto direto no faturamento. Neste trabalho, projeta-se a curto prazo o Churn de uma empresa de e-commerce com base no histórico de seus dados. Para isso, utilizam-se as séries temporais para a previsão desses dados, o modelo Autorregressivo Integrado Médias Móveis (ARIMA). O trabalho passou por todas as etapas do ciclo iterativo de um processo de previsão dos dados, começando do estudo e análise da base de dados, passando pela escolha e validação dos parâmetros do modelo até chegar a projeção dos dados. O teste Dickey-Fuller mostrou que a série é estacionária, o melhor modelo encontrado foi o AR(1) e os resíduos seguem uma distribuição normal.","PeriodicalId":30267,"journal":{"name":"Cadernos do IME Serie Estatistica","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UTILIZAÇÃO DOS MODELOS ARIMA PARA PREVISÃO DA TAXA DE CHURN: ESTUDO DE CASO PARA UMA EMPRESA DE E-COMMERCE\",\"authors\":\"E. D. Torres, J. Silva, Marcello Montillo Provenza, I. A. Lima, Jorge Luiz de Jesus Goulart\",\"doi\":\"10.12957/CADEST.2020.55671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A taxa de Churn, ou simplesmente Churn, calcula o número de usuários que se desconectam dos serviços de uma empresa em um período de tempo específico. Para alguns setores, esta é uma métrica básica para avaliar o sucesso do negócio, já que apresenta impacto direto no faturamento. Neste trabalho, projeta-se a curto prazo o Churn de uma empresa de e-commerce com base no histórico de seus dados. Para isso, utilizam-se as séries temporais para a previsão desses dados, o modelo Autorregressivo Integrado Médias Móveis (ARIMA). O trabalho passou por todas as etapas do ciclo iterativo de um processo de previsão dos dados, começando do estudo e análise da base de dados, passando pela escolha e validação dos parâmetros do modelo até chegar a projeção dos dados. O teste Dickey-Fuller mostrou que a série é estacionária, o melhor modelo encontrado foi o AR(1) e os resíduos seguem uma distribuição normal.\",\"PeriodicalId\":30267,\"journal\":{\"name\":\"Cadernos do IME Serie Estatistica\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cadernos do IME Serie Estatistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12957/CADEST.2020.55671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cadernos do IME Serie Estatistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12957/CADEST.2020.55671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UTILIZAÇÃO DOS MODELOS ARIMA PARA PREVISÃO DA TAXA DE CHURN: ESTUDO DE CASO PARA UMA EMPRESA DE E-COMMERCE
A taxa de Churn, ou simplesmente Churn, calcula o número de usuários que se desconectam dos serviços de uma empresa em um período de tempo específico. Para alguns setores, esta é uma métrica básica para avaliar o sucesso do negócio, já que apresenta impacto direto no faturamento. Neste trabalho, projeta-se a curto prazo o Churn de uma empresa de e-commerce com base no histórico de seus dados. Para isso, utilizam-se as séries temporais para a previsão desses dados, o modelo Autorregressivo Integrado Médias Móveis (ARIMA). O trabalho passou por todas as etapas do ciclo iterativo de um processo de previsão dos dados, começando do estudo e análise da base de dados, passando pela escolha e validação dos parâmetros do modelo até chegar a projeção dos dados. O teste Dickey-Fuller mostrou que a série é estacionária, o melhor modelo encontrado foi o AR(1) e os resíduos seguem uma distribuição normal.