M. Bogomilov, C. Booth, P. Owens, N. Collomb, I. Mullacrane, C. Pidcott, Y. Kuno, A. Oates, P. Kyberd, R. Mazza, R. Gamet, C. White, D. Summers, D. Sanders, M. Popovic, P. Snopok, N. Jovančević, K. Dumbell, C. Brown, C. Hunt, D. Kaplan, V. Palladino, K. Long, S. Gourlay, G. Chatzitheodoridis, J. Nebrensky, A. Dobbs, M. Savic, A. Demello, J. Nikolov, C. Whyte, F. Chignoli, P. Cooke, G. Hanson, S. Wilbur, A. Nichols, M. Chung, C. Rogers, J. Boehm, H. Witte, R. Preece, C. Macwaters, S. Griffiths, T. Stanley, A. Muir, J. Martyniak, S. Middleton, J. Govans, P. Warburton, R. Tsenov, C. Sung, S. Prestemon, P. Jurj, A. Bross, J. Nugent, T. Lord, P. Hodgson, A. Wilson, R. Gardener, L. Cremaldi, J. Lagrange, S. Virostek, J. R. Greis, A. Kurup, M. Hills, F. Drielsma, D. Maletic, T. Luo, G. Stokes, K. Ronald, T. Bradshaw, S. Ricciardi, M. Vretenar, R. Asfandiyarov, A. Sato, P. Rubinov, E. Overton, M. Tucker, R. Bertoni, V. Blackmore, L. Tortora, A. Blondel, G. Charnley, H. Sakamoto, A. Gallagher, T. Mohayai, C. Heidt
{"title":"用μ子电离冷却实验首次证明了电离冷却","authors":"M. Bogomilov, C. Booth, P. Owens, N. Collomb, I. Mullacrane, C. Pidcott, Y. Kuno, A. Oates, P. Kyberd, R. Mazza, R. Gamet, C. White, D. Summers, D. Sanders, M. Popovic, P. Snopok, N. Jovančević, K. Dumbell, C. Brown, C. Hunt, D. Kaplan, V. Palladino, K. Long, S. Gourlay, G. Chatzitheodoridis, J. Nebrensky, A. Dobbs, M. Savic, A. Demello, J. Nikolov, C. Whyte, F. Chignoli, P. Cooke, G. Hanson, S. Wilbur, A. Nichols, M. Chung, C. Rogers, J. Boehm, H. Witte, R. Preece, C. Macwaters, S. Griffiths, T. Stanley, A. Muir, J. Martyniak, S. Middleton, J. Govans, P. Warburton, R. Tsenov, C. Sung, S. Prestemon, P. Jurj, A. Bross, J. Nugent, T. Lord, P. Hodgson, A. Wilson, R. Gardener, L. Cremaldi, J. Lagrange, S. Virostek, J. R. Greis, A. Kurup, M. Hills, F. Drielsma, D. Maletic, T. Luo, G. Stokes, K. Ronald, T. Bradshaw, S. Ricciardi, M. Vretenar, R. Asfandiyarov, A. Sato, P. Rubinov, E. Overton, M. Tucker, R. Bertoni, V. Blackmore, L. Tortora, A. Blondel, G. Charnley, H. Sakamoto, A. Gallagher, T. Mohayai, C. Heidt","doi":"10.22323/1.390.0697","DOIUrl":null,"url":null,"abstract":"High-brightness muon beams of energy comparable to those produced by state-of-the-art electron, proton and ion accelerators have yet to be realised. Such beams have the potential to carry the search for new phenomena in lepton-antilepton collisions to extremely high energy and also to provide uniquely well-characterised neutrino beams. A muon beam may be created through the decay of pions produced in the interaction of a proton beam with a target. To produce a high-brightness beam from such a source requires that the phase space volume occupied by the muons be reduced (cooled). Ionization cooling is the novel technique by which it is proposed to cool the beam. The Muon Ionization Cooling Experiment collaboration has constructed a section of an ionization cooling cell and used it to provide the first demonstration of ionization cooling. We present these ground-breaking measurements.","PeriodicalId":20428,"journal":{"name":"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Demonstration of Ionization Cooling by the Muon Ionization Cooling Experiment\",\"authors\":\"M. Bogomilov, C. Booth, P. Owens, N. Collomb, I. Mullacrane, C. Pidcott, Y. Kuno, A. Oates, P. Kyberd, R. Mazza, R. Gamet, C. White, D. Summers, D. Sanders, M. Popovic, P. Snopok, N. Jovančević, K. Dumbell, C. Brown, C. Hunt, D. Kaplan, V. Palladino, K. Long, S. Gourlay, G. Chatzitheodoridis, J. Nebrensky, A. Dobbs, M. Savic, A. Demello, J. Nikolov, C. Whyte, F. Chignoli, P. Cooke, G. Hanson, S. Wilbur, A. Nichols, M. Chung, C. Rogers, J. Boehm, H. Witte, R. Preece, C. Macwaters, S. Griffiths, T. Stanley, A. Muir, J. Martyniak, S. Middleton, J. Govans, P. Warburton, R. Tsenov, C. Sung, S. Prestemon, P. Jurj, A. Bross, J. Nugent, T. Lord, P. Hodgson, A. Wilson, R. Gardener, L. Cremaldi, J. Lagrange, S. Virostek, J. R. Greis, A. Kurup, M. Hills, F. Drielsma, D. Maletic, T. Luo, G. Stokes, K. Ronald, T. Bradshaw, S. Ricciardi, M. Vretenar, R. Asfandiyarov, A. Sato, P. Rubinov, E. Overton, M. Tucker, R. Bertoni, V. Blackmore, L. Tortora, A. Blondel, G. Charnley, H. Sakamoto, A. Gallagher, T. Mohayai, C. Heidt\",\"doi\":\"10.22323/1.390.0697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-brightness muon beams of energy comparable to those produced by state-of-the-art electron, proton and ion accelerators have yet to be realised. Such beams have the potential to carry the search for new phenomena in lepton-antilepton collisions to extremely high energy and also to provide uniquely well-characterised neutrino beams. A muon beam may be created through the decay of pions produced in the interaction of a proton beam with a target. To produce a high-brightness beam from such a source requires that the phase space volume occupied by the muons be reduced (cooled). Ionization cooling is the novel technique by which it is proposed to cool the beam. The Muon Ionization Cooling Experiment collaboration has constructed a section of an ionization cooling cell and used it to provide the first demonstration of ionization cooling. We present these ground-breaking measurements.\",\"PeriodicalId\":20428,\"journal\":{\"name\":\"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.390.0697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.390.0697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First Demonstration of Ionization Cooling by the Muon Ionization Cooling Experiment
High-brightness muon beams of energy comparable to those produced by state-of-the-art electron, proton and ion accelerators have yet to be realised. Such beams have the potential to carry the search for new phenomena in lepton-antilepton collisions to extremely high energy and also to provide uniquely well-characterised neutrino beams. A muon beam may be created through the decay of pions produced in the interaction of a proton beam with a target. To produce a high-brightness beam from such a source requires that the phase space volume occupied by the muons be reduced (cooled). Ionization cooling is the novel technique by which it is proposed to cool the beam. The Muon Ionization Cooling Experiment collaboration has constructed a section of an ionization cooling cell and used it to provide the first demonstration of ionization cooling. We present these ground-breaking measurements.