完全非线性微分包体的接近生存能力

Irina Căpraru, A. Lazu
{"title":"完全非线性微分包体的接近生存能力","authors":"Irina Căpraru, A. Lazu","doi":"10.2478/s11533-014-0424-z","DOIUrl":null,"url":null,"abstract":"We consider the nonlinear differential inclusion x′(t) ∈ Ax(t) + F(x(t)), where A is an m-dissipative operator on a separable Banach space X and F is a multi-function. We establish a viability result under Lipschitz hypothesis on F, that consists in proving the existence of solutions of the differential inclusion above, starting from a given set, which remain arbitrarily close to that set, if a tangency condition holds. To this end, we establish a kind of set-valued Gronwall’s lemma and a compactness theorem, which are extensions to the nonlinear case of similar results for semilinear differential inclusions. As an application, we give an approximate null controllability result.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"56 1","pages":"1447-1459"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Near viability for fully nonlinear differential inclusions\",\"authors\":\"Irina Căpraru, A. Lazu\",\"doi\":\"10.2478/s11533-014-0424-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the nonlinear differential inclusion x′(t) ∈ Ax(t) + F(x(t)), where A is an m-dissipative operator on a separable Banach space X and F is a multi-function. We establish a viability result under Lipschitz hypothesis on F, that consists in proving the existence of solutions of the differential inclusion above, starting from a given set, which remain arbitrarily close to that set, if a tangency condition holds. To this end, we establish a kind of set-valued Gronwall’s lemma and a compactness theorem, which are extensions to the nonlinear case of similar results for semilinear differential inclusions. As an application, we give an approximate null controllability result.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"56 1\",\"pages\":\"1447-1459\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-014-0424-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-014-0424-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

考虑非线性微分包含x′(t)∈Ax(t) + F(x(t)),其中A是可分离Banach空间x上的m-耗散算子,F是一个多函数。在F上的Lipschitz假设下,我们建立了一个生存性结果,它证明了上述微分包含的解的存在性,从给定集合出发,在相切条件成立的情况下,解与该集合保持任意接近。为此,我们建立了一类集值Gronwall引理和紧性定理,它们是对半线性微分包含的类似结果的非线性情况的推广。作为一个应用,我们给出了一个近似的零可控性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near viability for fully nonlinear differential inclusions
We consider the nonlinear differential inclusion x′(t) ∈ Ax(t) + F(x(t)), where A is an m-dissipative operator on a separable Banach space X and F is a multi-function. We establish a viability result under Lipschitz hypothesis on F, that consists in proving the existence of solutions of the differential inclusion above, starting from a given set, which remain arbitrarily close to that set, if a tangency condition holds. To this end, we establish a kind of set-valued Gronwall’s lemma and a compactness theorem, which are extensions to the nonlinear case of similar results for semilinear differential inclusions. As an application, we give an approximate null controllability result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信