具有一般高斯信道的多输入单输出通信系统优化:非平凡协方差和非零均值

A. L. Moustakas, S. Simon
{"title":"具有一般高斯信道的多输入单输出通信系统优化:非平凡协方差和非零均值","authors":"A. L. Moustakas, S. Simon","doi":"10.1109/TIT.2003.817464","DOIUrl":null,"url":null,"abstract":"We consider a narrow-band point-to-point communication system with many (input) transmitters and a single (output) receiver (i.e., a multiple-input single output (MISO) system). We assume the receiver has perfect knowledge of the channel but the transmitter only knows the channel distribution. We focus on two canonical classes of Gaussian channel models: (a) the channel has zero mean with a fixed covariance matrix and (b) the channel has nonzero mean with covariance matrix proportional to the identity. In both cases, we are able to derive simple analytic expressions for the ergodic average and the cumulative distribution function (c.d.f.) of the mutual information for arbitrary input (transmission) signal covariance. With minimal numerical effort, we then determine the ergodic and outage capacities and the corresponding capacity-achieving input signal covariances. Interestingly, we find that the optimal signal covariances for the ergodic and outage cases have very different behavior. In particular, under certain conditions, the outage capacity optimal covariance is a discontinuous function of the parameters describing the channel (such as strength of the correlations or the nonzero mean of the channel).","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"21 11 1","pages":"2770-2780"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Optimizing multiple-input single-output (MISO) communication systems with general Gaussian channels: nontrivial covariance and nonzero mean\",\"authors\":\"A. L. Moustakas, S. Simon\",\"doi\":\"10.1109/TIT.2003.817464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a narrow-band point-to-point communication system with many (input) transmitters and a single (output) receiver (i.e., a multiple-input single output (MISO) system). We assume the receiver has perfect knowledge of the channel but the transmitter only knows the channel distribution. We focus on two canonical classes of Gaussian channel models: (a) the channel has zero mean with a fixed covariance matrix and (b) the channel has nonzero mean with covariance matrix proportional to the identity. In both cases, we are able to derive simple analytic expressions for the ergodic average and the cumulative distribution function (c.d.f.) of the mutual information for arbitrary input (transmission) signal covariance. With minimal numerical effort, we then determine the ergodic and outage capacities and the corresponding capacity-achieving input signal covariances. Interestingly, we find that the optimal signal covariances for the ergodic and outage cases have very different behavior. In particular, under certain conditions, the outage capacity optimal covariance is a discontinuous function of the parameters describing the channel (such as strength of the correlations or the nonzero mean of the channel).\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"21 11 1\",\"pages\":\"2770-2780\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIT.2003.817464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2003.817464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

摘要

我们考虑一个窄带点对点通信系统,具有多个(输入)发射器和单个(输出)接收器(即多输入单输出(MISO)系统)。我们假设接收器完全了解信道,而发射器只知道信道分布。我们重点研究了两类典型的高斯信道模型:(a)具有固定协方差矩阵的信道均值为零;(b)具有协方差矩阵与恒等式成比例的信道均值为非零。在这两种情况下,我们都能够推导出任意输入(传输)信号协方差的互信息的遍历平均值和累积分布函数(c.d.f.)的简单解析表达式。然后,通过最小的数值努力,我们确定遍历和中断能力以及相应的容量实现输入信号协方差。有趣的是,我们发现遍历和中断情况下的最优信号协方差具有非常不同的行为。特别是,在某些条件下,中断容量最优协方差是描述信道的参数(如相关性强度或信道的非零平均值)的不连续函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing multiple-input single-output (MISO) communication systems with general Gaussian channels: nontrivial covariance and nonzero mean
We consider a narrow-band point-to-point communication system with many (input) transmitters and a single (output) receiver (i.e., a multiple-input single output (MISO) system). We assume the receiver has perfect knowledge of the channel but the transmitter only knows the channel distribution. We focus on two canonical classes of Gaussian channel models: (a) the channel has zero mean with a fixed covariance matrix and (b) the channel has nonzero mean with covariance matrix proportional to the identity. In both cases, we are able to derive simple analytic expressions for the ergodic average and the cumulative distribution function (c.d.f.) of the mutual information for arbitrary input (transmission) signal covariance. With minimal numerical effort, we then determine the ergodic and outage capacities and the corresponding capacity-achieving input signal covariances. Interestingly, we find that the optimal signal covariances for the ergodic and outage cases have very different behavior. In particular, under certain conditions, the outage capacity optimal covariance is a discontinuous function of the parameters describing the channel (such as strength of the correlations or the nonzero mean of the channel).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信