张量Kronecker积解耦的显性z特征对

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Charles Colley, Huda Nassar, D. Gleich
{"title":"张量Kronecker积解耦的显性z特征对","authors":"Charles Colley, Huda Nassar, D. Gleich","doi":"10.1137/22m1502008","DOIUrl":null,"url":null,"abstract":"Tensor Kronecker products, the natural generalization of the matrix Kronecker product, are independently emerging in multiple research communities. Like their matrix counterpart, the tensor generalization gives structure for implicit multiplication and factorization theorems. We present a theorem that decouples the dominant eigenvectors of tensor Kronecker products, which is a rare generalization from matrix theory to tensor eigenvectors. This theorem implies low-rank structure ought to be present in the iterates of tensor power methods on Kronecker products. We investigate low-rank structure in the network alignment algorithm TAME, a power method heuristic. Using the low-rank structure directly or via a new heuristic embedding approach, we produce new algorithms which are faster while improving or maintaining accuracy, and which scale to problems that cannot be realistically handled with existing techniques.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"2 1","pages":"1006-1031"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dominant Z-Eigenpairs of Tensor Kronecker Products Decouple\",\"authors\":\"Charles Colley, Huda Nassar, D. Gleich\",\"doi\":\"10.1137/22m1502008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensor Kronecker products, the natural generalization of the matrix Kronecker product, are independently emerging in multiple research communities. Like their matrix counterpart, the tensor generalization gives structure for implicit multiplication and factorization theorems. We present a theorem that decouples the dominant eigenvectors of tensor Kronecker products, which is a rare generalization from matrix theory to tensor eigenvectors. This theorem implies low-rank structure ought to be present in the iterates of tensor power methods on Kronecker products. We investigate low-rank structure in the network alignment algorithm TAME, a power method heuristic. Using the low-rank structure directly or via a new heuristic embedding approach, we produce new algorithms which are faster while improving or maintaining accuracy, and which scale to problems that cannot be realistically handled with existing techniques.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":\"2 1\",\"pages\":\"1006-1031\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1502008\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1502008","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

张量Kronecker积是矩阵Kronecker积的自然推广,在多个研究团体中独立出现。和矩阵一样,张量泛化为隐式乘法和因式分解定理提供了结构。给出了张量Kronecker积的优势特征向量的解耦定理,这是矩阵理论在张量特征向量上的罕见推广。这个定理意味着在Kronecker积上的张量幂方法的迭代中应该存在低秩结构。我们研究了一种幂次启发式网络对齐算法TAME中的低秩结构。直接使用低秩结构或通过新的启发式嵌入方法,我们产生的新算法在提高或保持准确性的同时速度更快,并且可以扩展到现有技术无法实际处理的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dominant Z-Eigenpairs of Tensor Kronecker Products Decouple
Tensor Kronecker products, the natural generalization of the matrix Kronecker product, are independently emerging in multiple research communities. Like their matrix counterpart, the tensor generalization gives structure for implicit multiplication and factorization theorems. We present a theorem that decouples the dominant eigenvectors of tensor Kronecker products, which is a rare generalization from matrix theory to tensor eigenvectors. This theorem implies low-rank structure ought to be present in the iterates of tensor power methods on Kronecker products. We investigate low-rank structure in the network alignment algorithm TAME, a power method heuristic. Using the low-rank structure directly or via a new heuristic embedding approach, we produce new algorithms which are faster while improving or maintaining accuracy, and which scale to problems that cannot be realistically handled with existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信