哈罗斯图:实数的奇异表示

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jorge Calero-Sanz, B. Luque, L. Lacasa
{"title":"哈罗斯图:实数的奇异表示","authors":"Jorge Calero-Sanz, B. Luque, L. Lacasa","doi":"10.1093/comnet/cnac043","DOIUrl":null,"url":null,"abstract":"This paper introduces Haros graphs, a construction which provides a graph-theoretical representation of real numbers in the unit interval reached via paths in the Farey binary tree. We show how the topological structure of Haros graphs yields a natural classification of the reals numbers into a hierarchy of families. To unveil such classification, we introduce an entropic functional on these graphs and show that it can be expressed, thanks to its fractal nature, in terms of a generalised de Rham curve. We show that this entropy reaches a global maximum at the reciprocal of the Golden number and otherwise displays a rich hierarchy of local maxima and minima that relate to specific families of irrationals (noble numbers) and rationals, overall providing an exotic classification and representation of the reals numbers according to entropic principles. We close the paper with a number of conjectures and outline a research programme on Haros graphs.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Haros graphs: an exotic representation of real numbers\",\"authors\":\"Jorge Calero-Sanz, B. Luque, L. Lacasa\",\"doi\":\"10.1093/comnet/cnac043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces Haros graphs, a construction which provides a graph-theoretical representation of real numbers in the unit interval reached via paths in the Farey binary tree. We show how the topological structure of Haros graphs yields a natural classification of the reals numbers into a hierarchy of families. To unveil such classification, we introduce an entropic functional on these graphs and show that it can be expressed, thanks to its fractal nature, in terms of a generalised de Rham curve. We show that this entropy reaches a global maximum at the reciprocal of the Golden number and otherwise displays a rich hierarchy of local maxima and minima that relate to specific families of irrationals (noble numbers) and rationals, overall providing an exotic classification and representation of the reals numbers according to entropic principles. We close the paper with a number of conjectures and outline a research programme on Haros graphs.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/comnet/cnac043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnac043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了Haros图,它提供了实数在经Farey二叉树路径到达的单位区间内的图论表示。我们展示了Haros图的拓扑结构如何产生实数的自然分类到族的层次结构中。为了揭示这种分类,我们在这些图上引入了一个熵泛函,并表明由于它的分形性质,它可以用广义de Rham曲线来表示。我们表明,该熵在黄金数的倒数处达到全局最大值,否则显示与特定的无理数(贵族数)和有理数相关的局部最大值和最小值的丰富层次,总体上根据熵原理提供了实数的奇异分类和表示。我们以一些猜想和哈罗斯图的研究计划来结束论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Haros graphs: an exotic representation of real numbers
This paper introduces Haros graphs, a construction which provides a graph-theoretical representation of real numbers in the unit interval reached via paths in the Farey binary tree. We show how the topological structure of Haros graphs yields a natural classification of the reals numbers into a hierarchy of families. To unveil such classification, we introduce an entropic functional on these graphs and show that it can be expressed, thanks to its fractal nature, in terms of a generalised de Rham curve. We show that this entropy reaches a global maximum at the reciprocal of the Golden number and otherwise displays a rich hierarchy of local maxima and minima that relate to specific families of irrationals (noble numbers) and rationals, overall providing an exotic classification and representation of the reals numbers according to entropic principles. We close the paper with a number of conjectures and outline a research programme on Haros graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信