基于改进峰值区域能量和多模型最小二乘支持向量数据描述的自主水下航行器推力器故障识别

IF 1.7 4区 工程技术 Q3 ENGINEERING, INDUSTRIAL
Baoji Yin, Mingjun Zhang, Jiahui Zhou, Wenxian Tang, Z. Jin
{"title":"基于改进峰值区域能量和多模型最小二乘支持向量数据描述的自主水下航行器推力器故障识别","authors":"Baoji Yin, Mingjun Zhang, Jiahui Zhou, Wenxian Tang, Z. Jin","doi":"10.1177/1748006x221139618","DOIUrl":null,"url":null,"abstract":"This article investigates a novel fault identification approach to determine the percentage of the thrust loss for autonomous underwater vehicle thrusters. The novel approach is developed from a combination of the peak region energy (PRE) and support vector data description (SVDD) by considering that PRE is able to acquire a primary feature in low dimensions from signals without any secondary process and that SVDD can establish a hypersphere boundary for a class of fault samples even in the case of a small number of training samples. Three improvements, namely removing the fusion, an energy leakage and a homomorphic transform are applied to the PRE. It forms an improved PRE to increase the area under the curve. Furthermore, another three new contents, namely the least square, a multiple model fusion and a dead zone are added to the SVDD. It constructs a multiple model least square SVDD to increase the overall identification accuracy. Experiments are performed on an experimental prototype autonomous underwater vehicle in a pool. The experimental results indicate the effectiveness of the proposed method.","PeriodicalId":51266,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thruster fault identification using improved peak region energy and multiple model least square support vector data description for autonomous underwater vehicle\",\"authors\":\"Baoji Yin, Mingjun Zhang, Jiahui Zhou, Wenxian Tang, Z. Jin\",\"doi\":\"10.1177/1748006x221139618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates a novel fault identification approach to determine the percentage of the thrust loss for autonomous underwater vehicle thrusters. The novel approach is developed from a combination of the peak region energy (PRE) and support vector data description (SVDD) by considering that PRE is able to acquire a primary feature in low dimensions from signals without any secondary process and that SVDD can establish a hypersphere boundary for a class of fault samples even in the case of a small number of training samples. Three improvements, namely removing the fusion, an energy leakage and a homomorphic transform are applied to the PRE. It forms an improved PRE to increase the area under the curve. Furthermore, another three new contents, namely the least square, a multiple model fusion and a dead zone are added to the SVDD. It constructs a multiple model least square SVDD to increase the overall identification accuracy. Experiments are performed on an experimental prototype autonomous underwater vehicle in a pool. The experimental results indicate the effectiveness of the proposed method.\",\"PeriodicalId\":51266,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1748006x221139618\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006x221139618","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种新的故障识别方法来确定自主水下航行器推进器的推力损失百分比。该方法将峰值区域能量(PRE)和支持向量数据描述(SVDD)相结合,考虑到PRE无需二次处理即可从信号中获取低维主特征,而SVDD即使在训练样本数量较少的情况下也可以为一类故障样本建立超球边界。对PRE进行了去除融合、能量泄漏和同态变换的改进。它形成一个改进的PRE,以增加曲线下的面积。在此基础上,增加了最小二乘、多模型融合和盲区三个新内容。构建了多模型最小二乘SVDD,提高了整体识别精度。在水池中对实验原型自主水下航行器进行了实验研究。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thruster fault identification using improved peak region energy and multiple model least square support vector data description for autonomous underwater vehicle
This article investigates a novel fault identification approach to determine the percentage of the thrust loss for autonomous underwater vehicle thrusters. The novel approach is developed from a combination of the peak region energy (PRE) and support vector data description (SVDD) by considering that PRE is able to acquire a primary feature in low dimensions from signals without any secondary process and that SVDD can establish a hypersphere boundary for a class of fault samples even in the case of a small number of training samples. Three improvements, namely removing the fusion, an energy leakage and a homomorphic transform are applied to the PRE. It forms an improved PRE to increase the area under the curve. Furthermore, another three new contents, namely the least square, a multiple model fusion and a dead zone are added to the SVDD. It constructs a multiple model least square SVDD to increase the overall identification accuracy. Experiments are performed on an experimental prototype autonomous underwater vehicle in a pool. The experimental results indicate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
19.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: The Journal of Risk and Reliability is for researchers and practitioners who are involved in the field of risk analysis and reliability engineering. The remit of the Journal covers concepts, theories, principles, approaches, methods and models for the proper understanding, assessment, characterisation and management of the risk and reliability of engineering systems. The journal welcomes papers which are based on mathematical and probabilistic analysis, simulation and/or optimisation, as well as works highlighting conceptual and managerial issues. Papers that provide perspectives on current practices and methods, and how to improve these, are also welcome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信