Maia型定点结果通过c类函数实现

Pub Date : 2020-11-01 DOI:10.2478/ausm-2020-0015
A. H. Ansari, M. Khan, V. Rakočević
{"title":"Maia型定点结果通过c类函数实现","authors":"A. H. Ansari, M. Khan, V. Rakočević","doi":"10.2478/ausm-2020-0015","DOIUrl":null,"url":null,"abstract":"Abstract In 1968, M. G. Maia [16] generalized Banach’s fixed point theorem for a set X endowed with two metrics. In 2014, Ansari [2]introduced the concept of C-class functions and generalized many fixed point theorems in the literature. In this paper, we prove some Maia’s type fixed point results via C-class function in the setting of two metrics space endowed with a binary relation. Our results, generalized and extended many existing fixed point theorems, for generalized contractive and quasi-contractive mappings, in a metric space endowed with binary relation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maia type fixed point results via C-class function\",\"authors\":\"A. H. Ansari, M. Khan, V. Rakočević\",\"doi\":\"10.2478/ausm-2020-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In 1968, M. G. Maia [16] generalized Banach’s fixed point theorem for a set X endowed with two metrics. In 2014, Ansari [2]introduced the concept of C-class functions and generalized many fixed point theorems in the literature. In this paper, we prove some Maia’s type fixed point results via C-class function in the setting of two metrics space endowed with a binary relation. Our results, generalized and extended many existing fixed point theorems, for generalized contractive and quasi-contractive mappings, in a metric space endowed with binary relation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2020-0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2020-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

1968年,M. G. Maia[16]对给定两个度量的集合X推广了Banach不动点定理。2014年,Ansari[2]引入了c类函数的概念,并推广了文献中的许多不动点定理。本文利用c类函数证明了具有二元关系的两个度量空间上的一些Maia型不动点结果。我们的结果推广和推广了具有二元关系的度量空间中关于广义压缩和拟压缩映射的许多现有不动点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Maia type fixed point results via C-class function
Abstract In 1968, M. G. Maia [16] generalized Banach’s fixed point theorem for a set X endowed with two metrics. In 2014, Ansari [2]introduced the concept of C-class functions and generalized many fixed point theorems in the literature. In this paper, we prove some Maia’s type fixed point results via C-class function in the setting of two metrics space endowed with a binary relation. Our results, generalized and extended many existing fixed point theorems, for generalized contractive and quasi-contractive mappings, in a metric space endowed with binary relation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信