{"title":"数组数据上的相似性连接","authors":"Weijie Zhao, Florin Rusu, Bin Dong, Kesheng Wu","doi":"10.1145/2882903.2915247","DOIUrl":null,"url":null,"abstract":"Scientific applications are generating an ever-increasing volume of multi-dimensional data that are largely processed inside distributed array databases and frameworks. Similarity join is a fundamental operation across scientific workloads that requires complex processing over an unbounded number of pairs of multi-dimensional points. In this paper, we introduce a novel distributed similarity join operator for multi-dimensional arrays. Unlike immediate extensions to array join and relational similarity join, the proposed operator minimizes the overall data transfer and network congestion while providing load-balancing, without completely repartitioning and replicating the input arrays. We define formally array similarity join and present the design, optimization strategies, and evaluation of the first array similarity join operator.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Similarity Join over Array Data\",\"authors\":\"Weijie Zhao, Florin Rusu, Bin Dong, Kesheng Wu\",\"doi\":\"10.1145/2882903.2915247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific applications are generating an ever-increasing volume of multi-dimensional data that are largely processed inside distributed array databases and frameworks. Similarity join is a fundamental operation across scientific workloads that requires complex processing over an unbounded number of pairs of multi-dimensional points. In this paper, we introduce a novel distributed similarity join operator for multi-dimensional arrays. Unlike immediate extensions to array join and relational similarity join, the proposed operator minimizes the overall data transfer and network congestion while providing load-balancing, without completely repartitioning and replicating the input arrays. We define formally array similarity join and present the design, optimization strategies, and evaluation of the first array similarity join operator.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2915247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2915247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scientific applications are generating an ever-increasing volume of multi-dimensional data that are largely processed inside distributed array databases and frameworks. Similarity join is a fundamental operation across scientific workloads that requires complex processing over an unbounded number of pairs of multi-dimensional points. In this paper, we introduce a novel distributed similarity join operator for multi-dimensional arrays. Unlike immediate extensions to array join and relational similarity join, the proposed operator minimizes the overall data transfer and network congestion while providing load-balancing, without completely repartitioning and replicating the input arrays. We define formally array similarity join and present the design, optimization strategies, and evaluation of the first array similarity join operator.