用微分形式推广微分算子

E. Dil
{"title":"用微分形式推广微分算子","authors":"E. Dil","doi":"10.7212/ZKUFBD.V8I1.739","DOIUrl":null,"url":null,"abstract":"In this study, we derive the mostly used differential operators in physics, such as gradient, divergence, curl and Laplacian in different coordinate systems; Cartesian, cylindrical and spherical coordinate systems by using the differential forms. Also, we finally derive these differential operators for the generalized coordinates.","PeriodicalId":17742,"journal":{"name":"Karaelmas Science and Engineering Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization of differential operators by using differential forms\",\"authors\":\"E. Dil\",\"doi\":\"10.7212/ZKUFBD.V8I1.739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we derive the mostly used differential operators in physics, such as gradient, divergence, curl and Laplacian in different coordinate systems; Cartesian, cylindrical and spherical coordinate systems by using the differential forms. Also, we finally derive these differential operators for the generalized coordinates.\",\"PeriodicalId\":17742,\"journal\":{\"name\":\"Karaelmas Science and Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Karaelmas Science and Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7212/ZKUFBD.V8I1.739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Karaelmas Science and Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7212/ZKUFBD.V8I1.739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们导出了在不同坐标系下的梯度、散度、旋度和拉普拉斯等物理中最常用的微分算子;用微分形式计算笛卡尔坐标系、柱坐标系和球坐标系。最后,我们还推导出了这些广义坐标下的微分算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalization of differential operators by using differential forms
In this study, we derive the mostly used differential operators in physics, such as gradient, divergence, curl and Laplacian in different coordinate systems; Cartesian, cylindrical and spherical coordinate systems by using the differential forms. Also, we finally derive these differential operators for the generalized coordinates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信