{"title":"推力环境的一致标度定律","authors":"Sunil Kumar, M. Sharma, J. Das","doi":"10.4018/IJGEE.2018070104","DOIUrl":null,"url":null,"abstract":"The main objective of the present article is to develop self-consistent empirical relationships between rupture parameters and moment magnitude for the Himalayas. The database includes the fault rupture parameters of significant earthquakes in the Himalayan region and thrusting earthquakes from NGA West-2 database. The existing empirical relationships between magnitude and rupture parameters are reviewed in view of their consistency. The consistent relationships between moment magnitude and rupture parameters are derived and compared with the existing such relationships. The comparison of the developed consistent relationships reveal that the rupture length was being underestimated in the range of magnitude from 7 to 8, whereas it was overestimated in the lower range of magnitudes using inconsistent empirical relationships. While rupture width was overestimated for the entire range of magnitudes using inconsistent relationships, the rupture area was underestimated for magnitude greater than 7.","PeriodicalId":42473,"journal":{"name":"International Journal of Geotechnical Earthquake Engineering","volume":"570 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Consistent Scaling Laws for Thrusting Environment\",\"authors\":\"Sunil Kumar, M. Sharma, J. Das\",\"doi\":\"10.4018/IJGEE.2018070104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of the present article is to develop self-consistent empirical relationships between rupture parameters and moment magnitude for the Himalayas. The database includes the fault rupture parameters of significant earthquakes in the Himalayan region and thrusting earthquakes from NGA West-2 database. The existing empirical relationships between magnitude and rupture parameters are reviewed in view of their consistency. The consistent relationships between moment magnitude and rupture parameters are derived and compared with the existing such relationships. The comparison of the developed consistent relationships reveal that the rupture length was being underestimated in the range of magnitude from 7 to 8, whereas it was overestimated in the lower range of magnitudes using inconsistent empirical relationships. While rupture width was overestimated for the entire range of magnitudes using inconsistent relationships, the rupture area was underestimated for magnitude greater than 7.\",\"PeriodicalId\":42473,\"journal\":{\"name\":\"International Journal of Geotechnical Earthquake Engineering\",\"volume\":\"570 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geotechnical Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJGEE.2018070104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geotechnical Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGEE.2018070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
The main objective of the present article is to develop self-consistent empirical relationships between rupture parameters and moment magnitude for the Himalayas. The database includes the fault rupture parameters of significant earthquakes in the Himalayan region and thrusting earthquakes from NGA West-2 database. The existing empirical relationships between magnitude and rupture parameters are reviewed in view of their consistency. The consistent relationships between moment magnitude and rupture parameters are derived and compared with the existing such relationships. The comparison of the developed consistent relationships reveal that the rupture length was being underestimated in the range of magnitude from 7 to 8, whereas it was overestimated in the lower range of magnitudes using inconsistent empirical relationships. While rupture width was overestimated for the entire range of magnitudes using inconsistent relationships, the rupture area was underestimated for magnitude greater than 7.