图的度容忍着色

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
J. Kok
{"title":"图的度容忍着色","authors":"J. Kok","doi":"10.2478/ausi-2020-0013","DOIUrl":null,"url":null,"abstract":"Abstract This paper initiates a study on a new coloring regime which sets conditions in respect of the degrees deg(v) and deg(u) where, v, u ∈ V(G) and vu ∈ E(G). This new coloring regime is called, ”degree tolerant coloring”. The degree tolerant chromatic number is defined. A number of interesting introductory results are presented. Amongst others, new Nordhaus-Gaddum type bounds are provided.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"10 1","pages":"217 - 231"},"PeriodicalIF":0.3000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degree tolerant coloring of graph\",\"authors\":\"J. Kok\",\"doi\":\"10.2478/ausi-2020-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper initiates a study on a new coloring regime which sets conditions in respect of the degrees deg(v) and deg(u) where, v, u ∈ V(G) and vu ∈ E(G). This new coloring regime is called, ”degree tolerant coloring”. The degree tolerant chromatic number is defined. A number of interesting introductory results are presented. Amongst others, new Nordhaus-Gaddum type bounds are provided.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"10 1\",\"pages\":\"217 - 231\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2020-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2020-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了一个新的着色区,该着色区对度deg(v)和deg(u)设条件,其中,v, u∈v (G), vu∈E(G)。这种新的着色方式被称为“度耐受性着色”。定义了度容色数。提出了一些有趣的介绍性结果。其中,提供了新的诺德豪斯-加德姆类型界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degree tolerant coloring of graph
Abstract This paper initiates a study on a new coloring regime which sets conditions in respect of the degrees deg(v) and deg(u) where, v, u ∈ V(G) and vu ∈ E(G). This new coloring regime is called, ”degree tolerant coloring”. The degree tolerant chromatic number is defined. A number of interesting introductory results are presented. Amongst others, new Nordhaus-Gaddum type bounds are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信