{"title":"图的度容忍着色","authors":"J. Kok","doi":"10.2478/ausi-2020-0013","DOIUrl":null,"url":null,"abstract":"Abstract This paper initiates a study on a new coloring regime which sets conditions in respect of the degrees deg(v) and deg(u) where, v, u ∈ V(G) and vu ∈ E(G). This new coloring regime is called, ”degree tolerant coloring”. The degree tolerant chromatic number is defined. A number of interesting introductory results are presented. Amongst others, new Nordhaus-Gaddum type bounds are provided.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"10 1","pages":"217 - 231"},"PeriodicalIF":0.3000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degree tolerant coloring of graph\",\"authors\":\"J. Kok\",\"doi\":\"10.2478/ausi-2020-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper initiates a study on a new coloring regime which sets conditions in respect of the degrees deg(v) and deg(u) where, v, u ∈ V(G) and vu ∈ E(G). This new coloring regime is called, ”degree tolerant coloring”. The degree tolerant chromatic number is defined. A number of interesting introductory results are presented. Amongst others, new Nordhaus-Gaddum type bounds are provided.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"10 1\",\"pages\":\"217 - 231\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2020-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2020-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Abstract This paper initiates a study on a new coloring regime which sets conditions in respect of the degrees deg(v) and deg(u) where, v, u ∈ V(G) and vu ∈ E(G). This new coloring regime is called, ”degree tolerant coloring”. The degree tolerant chromatic number is defined. A number of interesting introductory results are presented. Amongst others, new Nordhaus-Gaddum type bounds are provided.