光滑环面域上mhd方程的全局正则解

Q4 Mathematics
A. Mikhaylov, Joanna Rencławowicz, W. Zaja̧czkowski
{"title":"光滑环面域上mhd方程的全局正则解","authors":"A. Mikhaylov, Joanna Rencławowicz, W. Zaja̧czkowski","doi":"10.4064/AM2284-2-2017","DOIUrl":null,"url":null,"abstract":"We consider the magnetohydrodynamic equations in a smooth toroid located at a positive distance from its axis of symmetry. Since the domain is axially symmetric, we can prove existence of global regular axially symmetric solutions. Next, stability of these solutions is proved. In this way the existence of global regular solutions close to the axially symmetric solutions for all time is shown.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"44 1","pages":"163-183"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On global regular solutions to the mhd equations in a smooth toroidal domain\",\"authors\":\"A. Mikhaylov, Joanna Rencławowicz, W. Zaja̧czkowski\",\"doi\":\"10.4064/AM2284-2-2017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the magnetohydrodynamic equations in a smooth toroid located at a positive distance from its axis of symmetry. Since the domain is axially symmetric, we can prove existence of global regular axially symmetric solutions. Next, stability of these solutions is proved. In this way the existence of global regular solutions close to the axially symmetric solutions for all time is shown.\",\"PeriodicalId\":52313,\"journal\":{\"name\":\"Applicationes Mathematicae\",\"volume\":\"44 1\",\"pages\":\"163-183\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/AM2284-2-2017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/AM2284-2-2017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑位于离对称轴正距离处的光滑环面中的磁流体动力学方程。由于定义域是轴对称的,我们可以证明全局正则轴对称解的存在性。其次,证明了这些解的稳定性。这样就证明了全局正则解在任何时候都是接近轴对称解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On global regular solutions to the mhd equations in a smooth toroidal domain
We consider the magnetohydrodynamic equations in a smooth toroid located at a positive distance from its axis of symmetry. Since the domain is axially symmetric, we can prove existence of global regular axially symmetric solutions. Next, stability of these solutions is proved. In this way the existence of global regular solutions close to the axially symmetric solutions for all time is shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信