论自然数的几何结构

Ramon Carbó Dorca
{"title":"论自然数的几何结构","authors":"Ramon Carbó Dorca","doi":"10.34257/ljrsvol23is6pg15","DOIUrl":null,"url":null,"abstract":"This work studies the natural powers of prime numbers as the building blocks of a Euclidian vector semi space. Some vectors generate the composite natural numbers by defining an appropriate geometrical norm. One also studies the structure of extended Mersenne numbers within this geometric point of view.\nFurther geometric applications and extensions of the powers of natural numbers are also studied with the help of inward vector operations. Two research lines follow the first discussion on the geometrical aspects of natural numbers: the extension of the Fermat theorem and the Euler-Riemann function.","PeriodicalId":12547,"journal":{"name":"Global Journal of Science Frontier Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Geometrical Structure of Natural Numbers\",\"authors\":\"Ramon Carbó Dorca\",\"doi\":\"10.34257/ljrsvol23is6pg15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies the natural powers of prime numbers as the building blocks of a Euclidian vector semi space. Some vectors generate the composite natural numbers by defining an appropriate geometrical norm. One also studies the structure of extended Mersenne numbers within this geometric point of view.\\nFurther geometric applications and extensions of the powers of natural numbers are also studied with the help of inward vector operations. Two research lines follow the first discussion on the geometrical aspects of natural numbers: the extension of the Fermat theorem and the Euler-Riemann function.\",\"PeriodicalId\":12547,\"journal\":{\"name\":\"Global Journal of Science Frontier Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Science Frontier Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34257/ljrsvol23is6pg15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Science Frontier Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/ljrsvol23is6pg15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作研究了素数的自然幂作为欧几里得向量半空间的构建块。有些向量通过定义适当的几何范数来生成复合自然数。在这种几何观点下,我们还研究了扩展梅森数的结构。在向内向量运算的帮助下,进一步研究了自然数幂的几何应用和扩展。在第一次讨论自然数的几何方面之后,有两条研究路线:费马定理的推广和欧拉-黎曼函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Geometrical Structure of Natural Numbers
This work studies the natural powers of prime numbers as the building blocks of a Euclidian vector semi space. Some vectors generate the composite natural numbers by defining an appropriate geometrical norm. One also studies the structure of extended Mersenne numbers within this geometric point of view. Further geometric applications and extensions of the powers of natural numbers are also studied with the help of inward vector operations. Two research lines follow the first discussion on the geometrical aspects of natural numbers: the extension of the Fermat theorem and the Euler-Riemann function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信