处理蔗渣增强高冲击聚苯乙烯(HIPS)的制备及性能研究

K. Benini, H. Voorwald, M. Cioffi
{"title":"处理蔗渣增强高冲击聚苯乙烯(HIPS)的制备及性能研究","authors":"K. Benini, H. Voorwald, M. Cioffi","doi":"10.6000/1929-5995.2017.06.01.1","DOIUrl":null,"url":null,"abstract":"Natural fibers obtained from sugarcane bagasse were used as reinforcement for high impact polystyrene (HIPS) composites. Fibers were chemically treated with an alkaline solution and then bleached with sodium chlorite and acetic acid, in order to remove amorphous constituents and improve adhesion with polimeric matrix.The alkali-treated and bleached fibers over a range of 10-30 wt% were mixed with HIPS and placed in an injector chamber in order to obtain tensile and flexural test specimens. Chemical treatment effects on composites properties were evaluated through mechanical tests and thermal and microscopy analysis. Experimental results show that composites with 30 wt% of alkali-treated fibers present an improvement in the tensile strength (17%), tensile modulus (96%) and flexural modulus (34%) with a consequent decrease in the ductility and in the thermal properties in comparisson to pure HIPS. An huge increase of 191% in the flexural modulus for composites with 30 wt% of bleached fibers was obtained compared to pure HIPS.","PeriodicalId":16998,"journal":{"name":"Journal of Research Updates in Polymer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Manufacturing and Characterization of High Impact Polystyrene (HIPS) Reinforced with Treated Sugarcane Bagasse\",\"authors\":\"K. Benini, H. Voorwald, M. Cioffi\",\"doi\":\"10.6000/1929-5995.2017.06.01.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural fibers obtained from sugarcane bagasse were used as reinforcement for high impact polystyrene (HIPS) composites. Fibers were chemically treated with an alkaline solution and then bleached with sodium chlorite and acetic acid, in order to remove amorphous constituents and improve adhesion with polimeric matrix.The alkali-treated and bleached fibers over a range of 10-30 wt% were mixed with HIPS and placed in an injector chamber in order to obtain tensile and flexural test specimens. Chemical treatment effects on composites properties were evaluated through mechanical tests and thermal and microscopy analysis. Experimental results show that composites with 30 wt% of alkali-treated fibers present an improvement in the tensile strength (17%), tensile modulus (96%) and flexural modulus (34%) with a consequent decrease in the ductility and in the thermal properties in comparisson to pure HIPS. An huge increase of 191% in the flexural modulus for composites with 30 wt% of bleached fibers was obtained compared to pure HIPS.\",\"PeriodicalId\":16998,\"journal\":{\"name\":\"Journal of Research Updates in Polymer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research Updates in Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6000/1929-5995.2017.06.01.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research Updates in Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-5995.2017.06.01.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从蔗渣中提取的天然纤维被用作高冲击聚苯乙烯(HIPS)复合材料的增强材料。用碱性溶液对纤维进行化学处理,然后用亚氯酸钠和醋酸对纤维进行漂白,以去除非晶态成分,提高纤维与聚合物基体的附着力。在10-30 wt%的范围内,碱处理和漂白的纤维与HIPS混合,并放置在注入室中,以获得拉伸和弯曲试验样品。通过力学试验、热分析和显微分析,评价了化学处理对复合材料性能的影响。实验结果表明,与纯HIPS相比,碱处理纤维含量为30%的复合材料的拉伸强度(17%)、拉伸模量(96%)和弯曲模量(34%)有所提高,但延展性和热性能有所下降。与纯HIPS相比,添加30%漂白纤维的复合材料的弯曲模量增加了191%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manufacturing and Characterization of High Impact Polystyrene (HIPS) Reinforced with Treated Sugarcane Bagasse
Natural fibers obtained from sugarcane bagasse were used as reinforcement for high impact polystyrene (HIPS) composites. Fibers were chemically treated with an alkaline solution and then bleached with sodium chlorite and acetic acid, in order to remove amorphous constituents and improve adhesion with polimeric matrix.The alkali-treated and bleached fibers over a range of 10-30 wt% were mixed with HIPS and placed in an injector chamber in order to obtain tensile and flexural test specimens. Chemical treatment effects on composites properties were evaluated through mechanical tests and thermal and microscopy analysis. Experimental results show that composites with 30 wt% of alkali-treated fibers present an improvement in the tensile strength (17%), tensile modulus (96%) and flexural modulus (34%) with a consequent decrease in the ductility and in the thermal properties in comparisson to pure HIPS. An huge increase of 191% in the flexural modulus for composites with 30 wt% of bleached fibers was obtained compared to pure HIPS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信