深海条件下人为和自然硫化氢的溶解

IF 3.6 4区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Andrés Rodríguez, S. Lonin, J. Cubillos
{"title":"深海条件下人为和自然硫化氢的溶解","authors":"Andrés Rodríguez, S. Lonin, J. Cubillos","doi":"10.1080/26395940.2023.2236299","DOIUrl":null,"url":null,"abstract":"ABSTRACT Natural and anthropogenic event information helped to simulate the physical–chemical behavior of hydrogen sulfide (H2S) in a deep oil spill and a hypothetical deep-ocean hydrothermal discharge. This research led to the development of the Lagrangian model of the discharge plumes in both cases and also analyzed the profiles of the H2S concentration at different depths taking into account its dissolution in ocean water and oceanographic conditions, such as thermohaline stratification, current fields, as well as the characteristics of the spilled hydrocarbon and the hydrothermal. The results revealed a first approximation in the identification of the dynamic behavior of the concentration profiles of H2S as a function of the oceanographic conditions. Hydrogen sulfide concentrations vary between natural and anthropogenic discharges at various depths, leading to a numerical model for applying in chemical oceanography.","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissolution of anthropogenic and natural hydrogen sulfide in deep-ocean conditions\",\"authors\":\"Andrés Rodríguez, S. Lonin, J. Cubillos\",\"doi\":\"10.1080/26395940.2023.2236299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Natural and anthropogenic event information helped to simulate the physical–chemical behavior of hydrogen sulfide (H2S) in a deep oil spill and a hypothetical deep-ocean hydrothermal discharge. This research led to the development of the Lagrangian model of the discharge plumes in both cases and also analyzed the profiles of the H2S concentration at different depths taking into account its dissolution in ocean water and oceanographic conditions, such as thermohaline stratification, current fields, as well as the characteristics of the spilled hydrocarbon and the hydrothermal. The results revealed a first approximation in the identification of the dynamic behavior of the concentration profiles of H2S as a function of the oceanographic conditions. Hydrogen sulfide concentrations vary between natural and anthropogenic discharges at various depths, leading to a numerical model for applying in chemical oceanography.\",\"PeriodicalId\":11785,\"journal\":{\"name\":\"Environmental Pollutants and Bioavailability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollutants and Bioavailability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/26395940.2023.2236299\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollutants and Bioavailability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/26395940.2023.2236299","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissolution of anthropogenic and natural hydrogen sulfide in deep-ocean conditions
ABSTRACT Natural and anthropogenic event information helped to simulate the physical–chemical behavior of hydrogen sulfide (H2S) in a deep oil spill and a hypothetical deep-ocean hydrothermal discharge. This research led to the development of the Lagrangian model of the discharge plumes in both cases and also analyzed the profiles of the H2S concentration at different depths taking into account its dissolution in ocean water and oceanographic conditions, such as thermohaline stratification, current fields, as well as the characteristics of the spilled hydrocarbon and the hydrothermal. The results revealed a first approximation in the identification of the dynamic behavior of the concentration profiles of H2S as a function of the oceanographic conditions. Hydrogen sulfide concentrations vary between natural and anthropogenic discharges at various depths, leading to a numerical model for applying in chemical oceanography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Pollutants and Bioavailability
Environmental Pollutants and Bioavailability Chemical Engineering-Chemical Health and Safety
CiteScore
4.30
自引率
3.00%
发文量
47
审稿时长
13 weeks
期刊介绍: Environmental Pollutants & Bioavailability is a peer-reviewed open access forum for insights on the chemical aspects of pollutants in the environment and biota, and their impacts on the uptake of the substances by living organisms. Topics include the occurrence, distribution, transport, transformation, transfer, fate, and effects of environmental pollutants, as well as their impact on living organisms. Substances of interests include heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信