无三角图的谱

J. Balogh, F. Clemen, Bernard Lidick'y, S. Norin, Jan Volec
{"title":"无三角图的谱","authors":"J. Balogh, F. Clemen, Bernard Lidick'y, S. Norin, Jan Volec","doi":"10.1137/22m150767x","DOIUrl":null,"url":null,"abstract":"Denote by $q_n(G)$ the smallest eigenvalue of the signless Laplacian matrix of an $n$-vertex graph $G$. Brandt conjectured in 1997 that for regular triangle-free graphs $q_n(G) \\leq \\frac{4n}{25}$. We prove a stronger result: If $G$ is a triangle-free graph then $q_n(G) \\leq \\frac{15n}{94}<\\frac{4n}{25}$. Brandt's conjecture is a subproblem of two famous conjectures of Erd\\H{o}s: (1) Sparse-Half-Conjecture: Every $n$-vertex triangle-free graph has a subset of vertices of size $\\lceil\\frac{n}{2}\\rceil$ spanning at most $n^2/50$ edges. (2) Every $n$-vertex triangle-free graph can be made bipartite by removing at most $n^2/25$ edges. In our proof we use linear algebraic methods to upper bound $q_n(G)$ by the ratio between the number of induced paths with 3 and 4 vertices. We give an upper bound on this ratio via the method of flag algebras.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"44 1","pages":"1173-1179"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Spectrum of Triangle-Free Graphs\",\"authors\":\"J. Balogh, F. Clemen, Bernard Lidick'y, S. Norin, Jan Volec\",\"doi\":\"10.1137/22m150767x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Denote by $q_n(G)$ the smallest eigenvalue of the signless Laplacian matrix of an $n$-vertex graph $G$. Brandt conjectured in 1997 that for regular triangle-free graphs $q_n(G) \\\\leq \\\\frac{4n}{25}$. We prove a stronger result: If $G$ is a triangle-free graph then $q_n(G) \\\\leq \\\\frac{15n}{94}<\\\\frac{4n}{25}$. Brandt's conjecture is a subproblem of two famous conjectures of Erd\\\\H{o}s: (1) Sparse-Half-Conjecture: Every $n$-vertex triangle-free graph has a subset of vertices of size $\\\\lceil\\\\frac{n}{2}\\\\rceil$ spanning at most $n^2/50$ edges. (2) Every $n$-vertex triangle-free graph can be made bipartite by removing at most $n^2/25$ edges. In our proof we use linear algebraic methods to upper bound $q_n(G)$ by the ratio between the number of induced paths with 3 and 4 vertices. We give an upper bound on this ratio via the method of flag algebras.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":\"44 1\",\"pages\":\"1173-1179\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m150767x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m150767x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

用$q_n(G)$表示一个$n$ -顶点图$G$的无符号拉普拉斯矩阵的最小特征值。Brandt在1997年推测对于正则无三角形图$q_n(G) \leq \frac{4n}{25}$。我们证明了一个更强的结果:如果$G$是一个无三角形图,那么$q_n(G) \leq \frac{15n}{94}<\frac{4n}{25}$。Brandt猜想是Erd的两个著名猜想\H{o} s的子问题:(1)稀疏半猜想:每个$n$顶点无三角形图都有一个顶点子集,其大小为$\lceil\frac{n}{2}\rceil$,最多生成$n^2/50$条边。(2)每一个$n$顶点无三角形图,通过去除最多$n^2/25$条边可以得到二部图。在我们的证明中,我们使用线性代数方法通过具有3个顶点和4个顶点的诱导路径数量之间的比率来上界$q_n(G)$。利用标志代数的方法给出了该比值的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Spectrum of Triangle-Free Graphs
Denote by $q_n(G)$ the smallest eigenvalue of the signless Laplacian matrix of an $n$-vertex graph $G$. Brandt conjectured in 1997 that for regular triangle-free graphs $q_n(G) \leq \frac{4n}{25}$. We prove a stronger result: If $G$ is a triangle-free graph then $q_n(G) \leq \frac{15n}{94}<\frac{4n}{25}$. Brandt's conjecture is a subproblem of two famous conjectures of Erd\H{o}s: (1) Sparse-Half-Conjecture: Every $n$-vertex triangle-free graph has a subset of vertices of size $\lceil\frac{n}{2}\rceil$ spanning at most $n^2/50$ edges. (2) Every $n$-vertex triangle-free graph can be made bipartite by removing at most $n^2/25$ edges. In our proof we use linear algebraic methods to upper bound $q_n(G)$ by the ratio between the number of induced paths with 3 and 4 vertices. We give an upper bound on this ratio via the method of flag algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信