利用贝叶斯和内曼-皮尔逊的理论来检测网络安全异常。

NGUYỄN VĂN ANH TUẤN, ĐINH HOÀNG HẢI ĐĂNG, TRẦN NAM BÁ, NGUYỄN THỊ THANH HÒA, TRỊNH THỊ BẢO BẢO, PHAN LÊ HOÀNG VIỆT, NGUYỄN CHÍ KIÊN, NGUYỄN HỮU TÌNH
{"title":"利用贝叶斯和内曼-皮尔逊的理论来检测网络安全异常。","authors":"NGUYỄN VĂN ANH TUẤN, ĐINH HOÀNG HẢI ĐĂNG, TRẦN NAM BÁ, NGUYỄN THỊ THANH HÒA, TRỊNH THỊ BẢO BẢO, PHAN LÊ HOÀNG VIỆT, NGUYỄN CHÍ KIÊN, NGUYỄN HỮU TÌNH","doi":"10.46242/jstiuh.v61i07.4724","DOIUrl":null,"url":null,"abstract":"Bộ tự mã hóa là một mô hình học không giám sát trong đó các tham số được điều chỉnh để vector đầu ra gần giống nhất với vector đầu vào. Trong bài báo này, chúng tôi sử dụng bộ tự mã hóa để phát hiện các kết nối bất thường trong mạng Internet. Mức lỗi tái tạo khi sử dụng bộ tự mã hoá sẽ được sử dụng để  phân lớp kết nối thành kết nối bình thường và kết nối bất thường. Chúng tôi trình bày ba phương pháp phân lớp độ lỗi tái tạo: phân lớp sử dụng một ngưỡng cho trước, phân lớp theo kiểm định giả thuyết Bayes và phân lớp theo kiểm định giả thuyết Neyman-Pearson. Độ chính xác trung bình đạt được trên ba phương pháp là trên bộ dữ liệu NSL KDD.","PeriodicalId":16979,"journal":{"name":"Journal of Science and Technology - IUH","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SỬ DỤNG KIỂM ĐỊNH GIẢ THUYẾT BAYES VÀ NEYMAN-PEARSON CHO BỘ TỰ MÃ HÓA ĐỂ PHÁT HIỆN BẤT THƯỜNG TRONG AN NINH MẠNG\",\"authors\":\"NGUYỄN VĂN ANH TUẤN, ĐINH HOÀNG HẢI ĐĂNG, TRẦN NAM BÁ, NGUYỄN THỊ THANH HÒA, TRỊNH THỊ BẢO BẢO, PHAN LÊ HOÀNG VIỆT, NGUYỄN CHÍ KIÊN, NGUYỄN HỮU TÌNH\",\"doi\":\"10.46242/jstiuh.v61i07.4724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bộ tự mã hóa là một mô hình học không giám sát trong đó các tham số được điều chỉnh để vector đầu ra gần giống nhất với vector đầu vào. Trong bài báo này, chúng tôi sử dụng bộ tự mã hóa để phát hiện các kết nối bất thường trong mạng Internet. Mức lỗi tái tạo khi sử dụng bộ tự mã hoá sẽ được sử dụng để  phân lớp kết nối thành kết nối bình thường và kết nối bất thường. Chúng tôi trình bày ba phương pháp phân lớp độ lỗi tái tạo: phân lớp sử dụng một ngưỡng cho trước, phân lớp theo kiểm định giả thuyết Bayes và phân lớp theo kiểm định giả thuyết Neyman-Pearson. Độ chính xác trung bình đạt được trên ba phương pháp là trên bộ dữ liệu NSL KDD.\",\"PeriodicalId\":16979,\"journal\":{\"name\":\"Journal of Science and Technology - IUH\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Technology - IUH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46242/jstiuh.v61i07.4724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology - IUH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46242/jstiuh.v61i07.4724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

编码器是一个不受监督的模型,其中参数被调整以使输出向量与输入向量最接近。在这篇文章中,我们使用编码器来检测网络中的异常连接。使用编码器时的重复错误级别将用于将连接层划分为正常连接和异常连接。我们提出了三种方法来划分可再生错误等级:使用预先阈值进行分层,根据贝叶斯假设进行分层,根据Neyman-Pearson假设进行分层。三种方法的平均精度是在NSL KDD数据集上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SỬ DỤNG KIỂM ĐỊNH GIẢ THUYẾT BAYES VÀ NEYMAN-PEARSON CHO BỘ TỰ MÃ HÓA ĐỂ PHÁT HIỆN BẤT THƯỜNG TRONG AN NINH MẠNG
Bộ tự mã hóa là một mô hình học không giám sát trong đó các tham số được điều chỉnh để vector đầu ra gần giống nhất với vector đầu vào. Trong bài báo này, chúng tôi sử dụng bộ tự mã hóa để phát hiện các kết nối bất thường trong mạng Internet. Mức lỗi tái tạo khi sử dụng bộ tự mã hoá sẽ được sử dụng để  phân lớp kết nối thành kết nối bình thường và kết nối bất thường. Chúng tôi trình bày ba phương pháp phân lớp độ lỗi tái tạo: phân lớp sử dụng một ngưỡng cho trước, phân lớp theo kiểm định giả thuyết Bayes và phân lớp theo kiểm định giả thuyết Neyman-Pearson. Độ chính xác trung bình đạt được trên ba phương pháp là trên bộ dữ liệu NSL KDD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信