{"title":"具有一个端点条件的一维标量自治泛函的间隙的出现","authors":"Cerf Raphael, Mariconda Carlo","doi":"10.2422/2036-2145.202209_007","DOIUrl":null,"url":null,"abstract":"Let $L:\\mathbb R\\times \\mathbb R\\to [0, +\\infty[\\,\\cup\\{+\\infty\\}$ be a Borel function. We consider the problem \\begin{equation}\\tag{P}\\min F(y)=\\int_0^1L(y(t), y'(t))\\,dt: y(0)=0,\\, y\\in W^{1,1}([0,1],\\mathbb R).\\end{equation} We give an example of a real valued Lagrangian $L$ for which the Lavrentiev phenomenon occurs. We state a condition, involving only the behavior of $L$ on the graph of two functions, that ensures the non-occurrence of the phenomenon. Our criterium weakens substantially the well-known condition, that $L$ is bounded on bounded sets.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"207 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Occurrence of gap for one-dimensional scalar autonomous functionals with one end point condition\",\"authors\":\"Cerf Raphael, Mariconda Carlo\",\"doi\":\"10.2422/2036-2145.202209_007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $L:\\\\mathbb R\\\\times \\\\mathbb R\\\\to [0, +\\\\infty[\\\\,\\\\cup\\\\{+\\\\infty\\\\}$ be a Borel function. We consider the problem \\\\begin{equation}\\\\tag{P}\\\\min F(y)=\\\\int_0^1L(y(t), y'(t))\\\\,dt: y(0)=0,\\\\, y\\\\in W^{1,1}([0,1],\\\\mathbb R).\\\\end{equation} We give an example of a real valued Lagrangian $L$ for which the Lavrentiev phenomenon occurs. We state a condition, involving only the behavior of $L$ on the graph of two functions, that ensures the non-occurrence of the phenomenon. Our criterium weakens substantially the well-known condition, that $L$ is bounded on bounded sets.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"207 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202209_007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202209_007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Occurrence of gap for one-dimensional scalar autonomous functionals with one end point condition
Let $L:\mathbb R\times \mathbb R\to [0, +\infty[\,\cup\{+\infty\}$ be a Borel function. We consider the problem \begin{equation}\tag{P}\min F(y)=\int_0^1L(y(t), y'(t))\,dt: y(0)=0,\, y\in W^{1,1}([0,1],\mathbb R).\end{equation} We give an example of a real valued Lagrangian $L$ for which the Lavrentiev phenomenon occurs. We state a condition, involving only the behavior of $L$ on the graph of two functions, that ensures the non-occurrence of the phenomenon. Our criterium weakens substantially the well-known condition, that $L$ is bounded on bounded sets.