SAIBench:为科学测试人工智能

Yatao Li , Jianfeng Zhan
{"title":"SAIBench:为科学测试人工智能","authors":"Yatao Li ,&nbsp;Jianfeng Zhan","doi":"10.1016/j.tbench.2022.100063","DOIUrl":null,"url":null,"abstract":"<div><p>Scientific research communities are embracing AI-based solutions to target tractable scientific tasks and improve research work flows. However, the development and evaluation of such solutions are scattered across multiple disciplines. We formalize the problem of scientific AI benchmarking, and propose a system called SAIBench in the hope of unifying the efforts and enabling low-friction on-boarding of new disciplines. The system approaches this goal with <em>SAIL</em>, a domain-specific language to decouple research problems, AI models, ranking criteria, and software/hardware configuration into reusable modules. We show that this approach is flexible and can adapt to problems, AI models, and evaluation methods defined in different perspectives. The project homepage is <span>https://www.computercouncil.org/SAIBench</span><svg><path></path></svg>.</p></div>","PeriodicalId":100155,"journal":{"name":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","volume":"2 2","pages":"Article 100063"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772485922000503/pdfft?md5=505b11231536e6de9f0ebf9c8f5747d2&pid=1-s2.0-S2772485922000503-main.pdf","citationCount":"2","resultStr":"{\"title\":\"SAIBench: Benchmarking AI for Science\",\"authors\":\"Yatao Li ,&nbsp;Jianfeng Zhan\",\"doi\":\"10.1016/j.tbench.2022.100063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Scientific research communities are embracing AI-based solutions to target tractable scientific tasks and improve research work flows. However, the development and evaluation of such solutions are scattered across multiple disciplines. We formalize the problem of scientific AI benchmarking, and propose a system called SAIBench in the hope of unifying the efforts and enabling low-friction on-boarding of new disciplines. The system approaches this goal with <em>SAIL</em>, a domain-specific language to decouple research problems, AI models, ranking criteria, and software/hardware configuration into reusable modules. We show that this approach is flexible and can adapt to problems, AI models, and evaluation methods defined in different perspectives. The project homepage is <span>https://www.computercouncil.org/SAIBench</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":100155,\"journal\":{\"name\":\"BenchCouncil Transactions on Benchmarks, Standards and Evaluations\",\"volume\":\"2 2\",\"pages\":\"Article 100063\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772485922000503/pdfft?md5=505b11231536e6de9f0ebf9c8f5747d2&pid=1-s2.0-S2772485922000503-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BenchCouncil Transactions on Benchmarks, Standards and Evaluations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772485922000503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BenchCouncil Transactions on Benchmarks, Standards and Evaluations","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772485922000503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

科学研究界正在采用基于人工智能的解决方案来针对可处理的科学任务并改善研究工作流程。然而,这些解决方案的开发和评估分散在多个学科中。我们将科学的人工智能基准问题形式化,并提出了一个名为SAIBench的系统,希望能够统一努力并实现新学科的低摩擦入职。该系统通过SAIL实现了这一目标,SAIL是一种领域特定的语言,可以将研究问题、人工智能模型、排名标准和软件/硬件配置解耦到可重用的模块中。我们表明,这种方法是灵活的,可以适应不同角度定义的问题、人工智能模型和评估方法。项目主页是https://www.computercouncil.org/SAIBench。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAIBench: Benchmarking AI for Science

Scientific research communities are embracing AI-based solutions to target tractable scientific tasks and improve research work flows. However, the development and evaluation of such solutions are scattered across multiple disciplines. We formalize the problem of scientific AI benchmarking, and propose a system called SAIBench in the hope of unifying the efforts and enabling low-friction on-boarding of new disciplines. The system approaches this goal with SAIL, a domain-specific language to decouple research problems, AI models, ranking criteria, and software/hardware configuration into reusable modules. We show that this approach is flexible and can adapt to problems, AI models, and evaluation methods defined in different perspectives. The project homepage is https://www.computercouncil.org/SAIBench.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信