蜂群斗篷:利用光强驱动的可穿戴触觉界面将两个微型四旋翼机降落在人手上

Evgeny V. Tsykunov, R. Agishev, R. Ibrahimov, Taha K. Moriyama, Luiza Labazanova, H. Kajimoto, D. Tsetserukou
{"title":"蜂群斗篷:利用光强驱动的可穿戴触觉界面将两个微型四旋翼机降落在人手上","authors":"Evgeny V. Tsykunov, R. Agishev, R. Ibrahimov, Taha K. Moriyama, Luiza Labazanova, H. Kajimoto, D. Tsetserukou","doi":"10.1109/HAPTICS45997.2020.ras.HAP20.89.9286fc30","DOIUrl":null,"url":null,"abstract":"For the human operator, it is often easier and faster to catch a small size quadrotor right in the midair instead of landing it on a surface. However, interaction strategies for such cases have not yet been considered properly, especially when more than one drone has to be landed at the same time. In this paper, we propose a novel interaction strategy to land multiple robots on the human hands using vibrotactile feedback. We developed a wearable tactile display that is activated by the intensity of light emitted from an LED ring on the bottom of the quadcopter. We conducted experiments, where participants were asked to adjust the position of the palm to land one or two vertically-descending drones with different landing speeds, by having only visual feedback, only tactile feedback or visual-tactile feedback. We conducted statistical analysis of the drone landing positions, landing pad and human head trajectories. Two-way ANOVA showed a statistically significant difference between the feedback conditions. Experimental analysis proved that with an increasing number of drones, tactile feedback plays a more important role in accurate hand positioning and operator’s convenience. The most precise landing of one and two drones was achieved with the combination of tactile and visual feedback.","PeriodicalId":6796,"journal":{"name":"2020 IEEE Haptics Symposium (HAPTICS)","volume":"310 1","pages":"987-992"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SwarmCloak: Landing of Two Micro-Quadrotors on Human Hands Using Wearable Tactile Interface Driven by Light Intensity\",\"authors\":\"Evgeny V. Tsykunov, R. Agishev, R. Ibrahimov, Taha K. Moriyama, Luiza Labazanova, H. Kajimoto, D. Tsetserukou\",\"doi\":\"10.1109/HAPTICS45997.2020.ras.HAP20.89.9286fc30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the human operator, it is often easier and faster to catch a small size quadrotor right in the midair instead of landing it on a surface. However, interaction strategies for such cases have not yet been considered properly, especially when more than one drone has to be landed at the same time. In this paper, we propose a novel interaction strategy to land multiple robots on the human hands using vibrotactile feedback. We developed a wearable tactile display that is activated by the intensity of light emitted from an LED ring on the bottom of the quadcopter. We conducted experiments, where participants were asked to adjust the position of the palm to land one or two vertically-descending drones with different landing speeds, by having only visual feedback, only tactile feedback or visual-tactile feedback. We conducted statistical analysis of the drone landing positions, landing pad and human head trajectories. Two-way ANOVA showed a statistically significant difference between the feedback conditions. Experimental analysis proved that with an increasing number of drones, tactile feedback plays a more important role in accurate hand positioning and operator’s convenience. The most precise landing of one and two drones was achieved with the combination of tactile and visual feedback.\",\"PeriodicalId\":6796,\"journal\":{\"name\":\"2020 IEEE Haptics Symposium (HAPTICS)\",\"volume\":\"310 1\",\"pages\":\"987-992\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Haptics Symposium (HAPTICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HAPTICS45997.2020.ras.HAP20.89.9286fc30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Haptics Symposium (HAPTICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HAPTICS45997.2020.ras.HAP20.89.9286fc30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于人类操作员,它往往更容易和更快地抓住一个小尺寸的四旋翼在半空中,而不是降落在一个表面。然而,这种情况下的交互策略还没有得到适当的考虑,特别是当多架无人机必须同时着陆时。在本文中,我们提出了一种新的交互策略,利用振动触觉反馈将多个机器人降落在人的手上。我们开发了一种可穿戴的触觉显示器,它由四轴飞行器底部的LED环发出的光强度激活。我们做了一些实验,要求参与者调整手掌的位置,让一架或两架垂直降落的无人机以不同的降落速度降落,方法是只有视觉反馈、只有触觉反馈或视觉-触觉反馈。我们对无人机的着陆位置、着陆垫和人的头部轨迹进行了统计分析。双向方差分析显示反馈条件之间的差异有统计学意义。实验分析证明,随着无人机数量的增加,触觉反馈在手部精确定位和操作方便方面发挥着越来越重要的作用。通过触觉和视觉反馈的结合,实现了一架和两架无人机的最精确着陆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SwarmCloak: Landing of Two Micro-Quadrotors on Human Hands Using Wearable Tactile Interface Driven by Light Intensity
For the human operator, it is often easier and faster to catch a small size quadrotor right in the midair instead of landing it on a surface. However, interaction strategies for such cases have not yet been considered properly, especially when more than one drone has to be landed at the same time. In this paper, we propose a novel interaction strategy to land multiple robots on the human hands using vibrotactile feedback. We developed a wearable tactile display that is activated by the intensity of light emitted from an LED ring on the bottom of the quadcopter. We conducted experiments, where participants were asked to adjust the position of the palm to land one or two vertically-descending drones with different landing speeds, by having only visual feedback, only tactile feedback or visual-tactile feedback. We conducted statistical analysis of the drone landing positions, landing pad and human head trajectories. Two-way ANOVA showed a statistically significant difference between the feedback conditions. Experimental analysis proved that with an increasing number of drones, tactile feedback plays a more important role in accurate hand positioning and operator’s convenience. The most precise landing of one and two drones was achieved with the combination of tactile and visual feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信