倒置体异质结(BHJ)聚合物(PCDTBT-PC70BM)太阳能光伏技术

Yogesh Kumar Dongre, S. Tiwari
{"title":"倒置体异质结(BHJ)聚合物(PCDTBT-PC70BM)太阳能光伏技术","authors":"Yogesh Kumar Dongre, S. Tiwari","doi":"10.52228/jrub.2022-35-1-3","DOIUrl":null,"url":null,"abstract":"\n Inverted Bulk heterojunctions (Ag/MoO3/PCDTBT-PC70BM/ZnO/ITO) Organic Solar cells, based on Organic (Polymer) materials is fabricated and characterized in this work. PCDTBT-PC70BM was synthesized by chloroform, chlorobenzene and o-dichlorobenzene (organic solvent). Surface morphology of ZnO and PCDTBT-PC70BM were studied. Bulk heterojunctions of active material are formed by the mixture of PCDTBT donor and PC70BM an acceptor in a random manner. For Sufficient transportation of charge carrier (electron and hole), hole transport (HT) and electron transport (ET) layers was deposited. ZnO is used as an ETM and synthesized by using Sol-Gel technique. MoO3 thin film deposited over the active material, enhances hole transformation because of band gap tuning with Ag and active materials. Absorbance and Photoluminescence spectra of polymer material with different organic solvents were studied and results were discussed in this work. o-dichlorobenzene enhance the absorption of PCDTBT/PC70BM. At 400 nm, 90% of sun light is absorbed, and 70% absorption is figure out in 500- 550nm wavelength. The Photo-luminescence of PCDTBT/PC70BM thin film in different organic solvents is ranging from 650nm to 750nm. At 700nm, 20% is shown for chloroform, 40% for chlorobenzene and highest 80% is achieved by o-dichlorobenzene. J-V value is obtained from a solar simulator which irradiates the sun spectrum 1.5 AM, for all the devices having cell area 0.045 cm2. For concentration (1:1) ratio in different organic solvents like chloroform, chlorobenzene and o-dichlorobenzene, (3.5, 4.2, and 5.8) %, PCE were obtained respectively. \n","PeriodicalId":17214,"journal":{"name":"Journal of Ravishankar University (PART-B)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverted Bulk Heterojunction (BHJ) Polymer (PCDTBT-PC70BM) Solar Photovoltaic Technology\",\"authors\":\"Yogesh Kumar Dongre, S. Tiwari\",\"doi\":\"10.52228/jrub.2022-35-1-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Inverted Bulk heterojunctions (Ag/MoO3/PCDTBT-PC70BM/ZnO/ITO) Organic Solar cells, based on Organic (Polymer) materials is fabricated and characterized in this work. PCDTBT-PC70BM was synthesized by chloroform, chlorobenzene and o-dichlorobenzene (organic solvent). Surface morphology of ZnO and PCDTBT-PC70BM were studied. Bulk heterojunctions of active material are formed by the mixture of PCDTBT donor and PC70BM an acceptor in a random manner. For Sufficient transportation of charge carrier (electron and hole), hole transport (HT) and electron transport (ET) layers was deposited. ZnO is used as an ETM and synthesized by using Sol-Gel technique. MoO3 thin film deposited over the active material, enhances hole transformation because of band gap tuning with Ag and active materials. Absorbance and Photoluminescence spectra of polymer material with different organic solvents were studied and results were discussed in this work. o-dichlorobenzene enhance the absorption of PCDTBT/PC70BM. At 400 nm, 90% of sun light is absorbed, and 70% absorption is figure out in 500- 550nm wavelength. The Photo-luminescence of PCDTBT/PC70BM thin film in different organic solvents is ranging from 650nm to 750nm. At 700nm, 20% is shown for chloroform, 40% for chlorobenzene and highest 80% is achieved by o-dichlorobenzene. J-V value is obtained from a solar simulator which irradiates the sun spectrum 1.5 AM, for all the devices having cell area 0.045 cm2. For concentration (1:1) ratio in different organic solvents like chloroform, chlorobenzene and o-dichlorobenzene, (3.5, 4.2, and 5.8) %, PCE were obtained respectively. \\n\",\"PeriodicalId\":17214,\"journal\":{\"name\":\"Journal of Ravishankar University (PART-B)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ravishankar University (PART-B)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52228/jrub.2022-35-1-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ravishankar University (PART-B)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52228/jrub.2022-35-1-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文制备了基于有机(聚合物)材料的反向体异质结(Ag/MoO3/PCDTBT-PC70BM/ZnO/ITO)有机太阳能电池,并对其进行了表征。以氯仿、氯苯和邻二氯苯(有机溶剂)为原料合成PCDTBT-PC70BM。研究了ZnO和PCDTBT-PC70BM的表面形貌。活性物质的体异质结是由pcdbt供体与PC70BM和受体随机混合形成的。为了保证载流子(电子和空穴)的充分输运,沉积了空穴输运层和电子输运层。以ZnO为ETM,采用溶胶-凝胶法制备。在活性材料上沉积的MoO3薄膜由于银和活性材料的带隙调谐而增强了空穴转变。研究了高分子材料在不同有机溶剂中的吸光度和光致发光光谱,并对结果进行了讨论。邻二氯苯增强pcdbt /PC70BM的吸收率。在400nm处,90%的太阳光被吸收,而在500- 550nm波长处,吸收率为70%。pcdbt /PC70BM薄膜在不同有机溶剂中的光致发光范围为650nm ~ 750nm。在700nm处,氯仿的收率为20%,氯苯为40%,邻二氯苯的收率最高为80%。对于所有电池面积为0.045 cm2的设备,J-V值由太阳模拟器获得,该太阳模拟器照射太阳光谱为1.5 AM。在氯仿、氯苯和邻二氯苯三种不同有机溶剂的浓度(1:1)比下,PCE分别为(3.5、4.2和5.8)%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverted Bulk Heterojunction (BHJ) Polymer (PCDTBT-PC70BM) Solar Photovoltaic Technology
Inverted Bulk heterojunctions (Ag/MoO3/PCDTBT-PC70BM/ZnO/ITO) Organic Solar cells, based on Organic (Polymer) materials is fabricated and characterized in this work. PCDTBT-PC70BM was synthesized by chloroform, chlorobenzene and o-dichlorobenzene (organic solvent). Surface morphology of ZnO and PCDTBT-PC70BM were studied. Bulk heterojunctions of active material are formed by the mixture of PCDTBT donor and PC70BM an acceptor in a random manner. For Sufficient transportation of charge carrier (electron and hole), hole transport (HT) and electron transport (ET) layers was deposited. ZnO is used as an ETM and synthesized by using Sol-Gel technique. MoO3 thin film deposited over the active material, enhances hole transformation because of band gap tuning with Ag and active materials. Absorbance and Photoluminescence spectra of polymer material with different organic solvents were studied and results were discussed in this work. o-dichlorobenzene enhance the absorption of PCDTBT/PC70BM. At 400 nm, 90% of sun light is absorbed, and 70% absorption is figure out in 500- 550nm wavelength. The Photo-luminescence of PCDTBT/PC70BM thin film in different organic solvents is ranging from 650nm to 750nm. At 700nm, 20% is shown for chloroform, 40% for chlorobenzene and highest 80% is achieved by o-dichlorobenzene. J-V value is obtained from a solar simulator which irradiates the sun spectrum 1.5 AM, for all the devices having cell area 0.045 cm2. For concentration (1:1) ratio in different organic solvents like chloroform, chlorobenzene and o-dichlorobenzene, (3.5, 4.2, and 5.8) %, PCE were obtained respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信