MOEA/D-DRA的自适应邻域大小调整

Meng Xu, Maoqing Zhang, Xingjuan Cai, Guoyou Zhang
{"title":"MOEA/D-DRA的自适应邻域大小调整","authors":"Meng Xu, Maoqing Zhang, Xingjuan Cai, Guoyou Zhang","doi":"10.1504/IJBIC.2021.113336","DOIUrl":null,"url":null,"abstract":"Multi-objective optimisation algorithm based on decomposition (MOEA/D) is a well-known multi-objective optimisation algorithm, which was widely applied for solving multi-objective optimisation problems (MOPs). MOEA/D decomposes a multi-objective problem into a set of scalar single objective sub-problems using aggregation function and evolutionary operator. A further improved version of MOEA/D with dynamic resource allocation strategy (MOEA/D-DRA) has exhibited outstanding performance on CEC2009 in terms of the convergence. However, it is very sensitive to the neighbourhood size. In this paper, a new enchanted MOEA/D-ANA strategy based on the adaptive neighbourhood size adjustment (MOEA/D-ANA) was presented to increase the diversity, which mainly focuses on the solutions density around sub-problems. The experiment results demonstrate that MOEA/D-ANA performs the best compared with other five classical MOEAs on the CEC2009 test instances.","PeriodicalId":13636,"journal":{"name":"Int. J. Bio Inspired Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adaptive neighbourhood size adjustment in MOEA/D-DRA\",\"authors\":\"Meng Xu, Maoqing Zhang, Xingjuan Cai, Guoyou Zhang\",\"doi\":\"10.1504/IJBIC.2021.113336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-objective optimisation algorithm based on decomposition (MOEA/D) is a well-known multi-objective optimisation algorithm, which was widely applied for solving multi-objective optimisation problems (MOPs). MOEA/D decomposes a multi-objective problem into a set of scalar single objective sub-problems using aggregation function and evolutionary operator. A further improved version of MOEA/D with dynamic resource allocation strategy (MOEA/D-DRA) has exhibited outstanding performance on CEC2009 in terms of the convergence. However, it is very sensitive to the neighbourhood size. In this paper, a new enchanted MOEA/D-ANA strategy based on the adaptive neighbourhood size adjustment (MOEA/D-ANA) was presented to increase the diversity, which mainly focuses on the solutions density around sub-problems. The experiment results demonstrate that MOEA/D-ANA performs the best compared with other five classical MOEAs on the CEC2009 test instances.\",\"PeriodicalId\":13636,\"journal\":{\"name\":\"Int. J. Bio Inspired Comput.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bio Inspired Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBIC.2021.113336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bio Inspired Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBIC.2021.113336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

基于分解的多目标优化算法(MOEA/D)是一种著名的多目标优化算法,广泛应用于求解多目标优化问题(MOPs)。MOEA/D利用聚集函数和进化算子将多目标问题分解为一组标量单目标子问题。采用动态资源分配策略的MOEA/D进一步改进版本(MOEA/D- dra)在CEC2009上表现出了出色的收敛性能。然而,它对邻居的大小非常敏感。本文提出了一种新的基于自适应邻域大小调整(MOEA/D-ANA)的强化MOEA/D-ANA策略,该策略主要关注子问题周围的解密度,以增加多样性。实验结果表明,在CEC2009测试实例上,与其他五种经典MOEA相比,MOEA/D-ANA的性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive neighbourhood size adjustment in MOEA/D-DRA
Multi-objective optimisation algorithm based on decomposition (MOEA/D) is a well-known multi-objective optimisation algorithm, which was widely applied for solving multi-objective optimisation problems (MOPs). MOEA/D decomposes a multi-objective problem into a set of scalar single objective sub-problems using aggregation function and evolutionary operator. A further improved version of MOEA/D with dynamic resource allocation strategy (MOEA/D-DRA) has exhibited outstanding performance on CEC2009 in terms of the convergence. However, it is very sensitive to the neighbourhood size. In this paper, a new enchanted MOEA/D-ANA strategy based on the adaptive neighbourhood size adjustment (MOEA/D-ANA) was presented to increase the diversity, which mainly focuses on the solutions density around sub-problems. The experiment results demonstrate that MOEA/D-ANA performs the best compared with other five classical MOEAs on the CEC2009 test instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信