{"title":"MOEA/D-DRA的自适应邻域大小调整","authors":"Meng Xu, Maoqing Zhang, Xingjuan Cai, Guoyou Zhang","doi":"10.1504/IJBIC.2021.113336","DOIUrl":null,"url":null,"abstract":"Multi-objective optimisation algorithm based on decomposition (MOEA/D) is a well-known multi-objective optimisation algorithm, which was widely applied for solving multi-objective optimisation problems (MOPs). MOEA/D decomposes a multi-objective problem into a set of scalar single objective sub-problems using aggregation function and evolutionary operator. A further improved version of MOEA/D with dynamic resource allocation strategy (MOEA/D-DRA) has exhibited outstanding performance on CEC2009 in terms of the convergence. However, it is very sensitive to the neighbourhood size. In this paper, a new enchanted MOEA/D-ANA strategy based on the adaptive neighbourhood size adjustment (MOEA/D-ANA) was presented to increase the diversity, which mainly focuses on the solutions density around sub-problems. The experiment results demonstrate that MOEA/D-ANA performs the best compared with other five classical MOEAs on the CEC2009 test instances.","PeriodicalId":13636,"journal":{"name":"Int. J. Bio Inspired Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adaptive neighbourhood size adjustment in MOEA/D-DRA\",\"authors\":\"Meng Xu, Maoqing Zhang, Xingjuan Cai, Guoyou Zhang\",\"doi\":\"10.1504/IJBIC.2021.113336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-objective optimisation algorithm based on decomposition (MOEA/D) is a well-known multi-objective optimisation algorithm, which was widely applied for solving multi-objective optimisation problems (MOPs). MOEA/D decomposes a multi-objective problem into a set of scalar single objective sub-problems using aggregation function and evolutionary operator. A further improved version of MOEA/D with dynamic resource allocation strategy (MOEA/D-DRA) has exhibited outstanding performance on CEC2009 in terms of the convergence. However, it is very sensitive to the neighbourhood size. In this paper, a new enchanted MOEA/D-ANA strategy based on the adaptive neighbourhood size adjustment (MOEA/D-ANA) was presented to increase the diversity, which mainly focuses on the solutions density around sub-problems. The experiment results demonstrate that MOEA/D-ANA performs the best compared with other five classical MOEAs on the CEC2009 test instances.\",\"PeriodicalId\":13636,\"journal\":{\"name\":\"Int. J. Bio Inspired Comput.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bio Inspired Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBIC.2021.113336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bio Inspired Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBIC.2021.113336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive neighbourhood size adjustment in MOEA/D-DRA
Multi-objective optimisation algorithm based on decomposition (MOEA/D) is a well-known multi-objective optimisation algorithm, which was widely applied for solving multi-objective optimisation problems (MOPs). MOEA/D decomposes a multi-objective problem into a set of scalar single objective sub-problems using aggregation function and evolutionary operator. A further improved version of MOEA/D with dynamic resource allocation strategy (MOEA/D-DRA) has exhibited outstanding performance on CEC2009 in terms of the convergence. However, it is very sensitive to the neighbourhood size. In this paper, a new enchanted MOEA/D-ANA strategy based on the adaptive neighbourhood size adjustment (MOEA/D-ANA) was presented to increase the diversity, which mainly focuses on the solutions density around sub-problems. The experiment results demonstrate that MOEA/D-ANA performs the best compared with other five classical MOEAs on the CEC2009 test instances.