使用crisp-dm流程框架对官方统计数据进行数据挖掘:以东爪哇省为例

Gunawan Gunawan
{"title":"使用crisp-dm流程框架对官方统计数据进行数据挖掘:以东爪哇省为例","authors":"Gunawan Gunawan","doi":"10.14203/jep.29.2.2021.183-198","DOIUrl":null,"url":null,"abstract":"Data mining on official statistics becomes a study interest, as it offers an opportunity to reveal hidden patterns within the data. This study investigates the data mining process's appropriateness using the CRISP-DM method to a secondary-quantitative data analysis and to investigate hidden information revealed from data mining on official statistics. Data is collected from the East Java BPS website, and the unit of analysis is regency/municipality. Five macro development indicators (Human Development Index, Gross Regional Domestic Products, poverty rate, Gini Ratio, open unemployment rate) are selected as analysis variables. Workflows of data analysis are designed using Knime software.  This study shows the usefulness of the CRISP-DM method for secondary research because it specifies standardized stages for analyzing secondary data and improves the secondary analysis rigor. Furthermore, the clustering technique classifies regencies/municipalities into three clusters. One of the clusters has desirable indicator levels: high Human Development Index - high Gross Regional Domestic Products - low poverty rate, together with undesirable ones: high Gini Ratio - high open unemployment rate. This result indicates that a regency/municipality might not achieve an ideal condition of the five macro development indicators. Some indicators such as the open unemployment rate might be an inevitable impact. This research adds to the literature on development economics studies, particularly on the application of data mining, the CRISP-DM method, and Knime software to official statistics. ","PeriodicalId":32634,"journal":{"name":"JEPI Jurnal Ekonomi dan Pembangunan Indonesia","volume":"190 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DATA MINING USING CRISP-DM PROCESS FRAMEWORK ON OFFICIAL STATISTICS: A CASE STUDY OF EAST JAVA PROVINCE\",\"authors\":\"Gunawan Gunawan\",\"doi\":\"10.14203/jep.29.2.2021.183-198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining on official statistics becomes a study interest, as it offers an opportunity to reveal hidden patterns within the data. This study investigates the data mining process's appropriateness using the CRISP-DM method to a secondary-quantitative data analysis and to investigate hidden information revealed from data mining on official statistics. Data is collected from the East Java BPS website, and the unit of analysis is regency/municipality. Five macro development indicators (Human Development Index, Gross Regional Domestic Products, poverty rate, Gini Ratio, open unemployment rate) are selected as analysis variables. Workflows of data analysis are designed using Knime software.  This study shows the usefulness of the CRISP-DM method for secondary research because it specifies standardized stages for analyzing secondary data and improves the secondary analysis rigor. Furthermore, the clustering technique classifies regencies/municipalities into three clusters. One of the clusters has desirable indicator levels: high Human Development Index - high Gross Regional Domestic Products - low poverty rate, together with undesirable ones: high Gini Ratio - high open unemployment rate. This result indicates that a regency/municipality might not achieve an ideal condition of the five macro development indicators. Some indicators such as the open unemployment rate might be an inevitable impact. This research adds to the literature on development economics studies, particularly on the application of data mining, the CRISP-DM method, and Knime software to official statistics. \",\"PeriodicalId\":32634,\"journal\":{\"name\":\"JEPI Jurnal Ekonomi dan Pembangunan Indonesia\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JEPI Jurnal Ekonomi dan Pembangunan Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14203/jep.29.2.2021.183-198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEPI Jurnal Ekonomi dan Pembangunan Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14203/jep.29.2.2021.183-198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

官方统计数据的数据挖掘成为一个研究兴趣,因为它提供了揭示数据中隐藏模式的机会。本研究探讨了数据挖掘过程中使用CRISP-DM方法进行二次定量数据分析的适当性,并调查了官方统计数据挖掘中隐藏的信息。数据是从East Java BPS网站收集的,分析单位是摄政/市政当局。选取5个宏观发展指标(人类发展指数、地区生产总值、贫困率、基尼系数、公开失业率)作为分析变量。利用Knime软件设计了数据分析的工作流程。本研究显示了CRISP-DM方法对二次研究的有用性,因为它规定了分析二次数据的标准化阶段,并提高了二次分析的严谨性。此外,聚类技术将县/市分为三个集群。其中一个集群具有理想的指标水平:高人类发展指数-高区域国内生产总值-低贫困率,以及不理想的指标水平:高基尼系数-高公开失业率。这一结果表明,一个县/直辖市可能无法达到五项宏观发展指标的理想条件。一些指标,如失业率的公开可能是不可避免的影响。这项研究增加了关于发展经济学研究的文献,特别是关于数据挖掘、CRISP-DM方法和Knime软件在官方统计中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DATA MINING USING CRISP-DM PROCESS FRAMEWORK ON OFFICIAL STATISTICS: A CASE STUDY OF EAST JAVA PROVINCE
Data mining on official statistics becomes a study interest, as it offers an opportunity to reveal hidden patterns within the data. This study investigates the data mining process's appropriateness using the CRISP-DM method to a secondary-quantitative data analysis and to investigate hidden information revealed from data mining on official statistics. Data is collected from the East Java BPS website, and the unit of analysis is regency/municipality. Five macro development indicators (Human Development Index, Gross Regional Domestic Products, poverty rate, Gini Ratio, open unemployment rate) are selected as analysis variables. Workflows of data analysis are designed using Knime software.  This study shows the usefulness of the CRISP-DM method for secondary research because it specifies standardized stages for analyzing secondary data and improves the secondary analysis rigor. Furthermore, the clustering technique classifies regencies/municipalities into three clusters. One of the clusters has desirable indicator levels: high Human Development Index - high Gross Regional Domestic Products - low poverty rate, together with undesirable ones: high Gini Ratio - high open unemployment rate. This result indicates that a regency/municipality might not achieve an ideal condition of the five macro development indicators. Some indicators such as the open unemployment rate might be an inevitable impact. This research adds to the literature on development economics studies, particularly on the application of data mining, the CRISP-DM method, and Knime software to official statistics. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信