Chao Chen, Zhao Chen, D. Bera, Emile Noothout, Z. Chang, Mingliang Tan, H. Vos, J. Bosch, M. Verweij, N. Jong, M. Pertijs
{"title":"用于微型3D超声探头的0.91mW/单元间距匹配前端ASIC与集成子阵列波束形成ADC","authors":"Chao Chen, Zhao Chen, D. Bera, Emile Noothout, Z. Chang, Mingliang Tan, H. Vos, J. Bosch, M. Verweij, N. Jong, M. Pertijs","doi":"10.1109/ISSCC.2018.8310246","DOIUrl":null,"url":null,"abstract":"Data acquisition from 2D transducer arrays is one of the main challenges for the development of emerging miniature 3D ultrasound imaging devices, such as 3D trans-esophageal (TEE) and intra-cardiac echocardiography (ICE) probes (Fig. 10.5.1). The main obstacle lies in the mismatch between the large number of transducer elements (103 to 104) and the limited cable count (<200). Recent advances in transducer-on-CMOS integration have enabled the use of in-probe subarray beamforming based on delay-and-sum (DAS) circuits [1] to reduce the channel count by an order of magnitude. Further reduction calls for in-probe digitization to enable more advanced data processing and compression in the digital domain. However, prior designs [2-4] compromise on transducer pitch (> half wavelength) to accommodate the ADC and consume >9mW/element, which translates into unacceptable self-heating in miniature 3D probes.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"190 1","pages":"186-188"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A 0.91mW/element pitch-matched front-end ASIC with integrated subarray beamforming ADC for miniature 3D ultrasound probes\",\"authors\":\"Chao Chen, Zhao Chen, D. Bera, Emile Noothout, Z. Chang, Mingliang Tan, H. Vos, J. Bosch, M. Verweij, N. Jong, M. Pertijs\",\"doi\":\"10.1109/ISSCC.2018.8310246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data acquisition from 2D transducer arrays is one of the main challenges for the development of emerging miniature 3D ultrasound imaging devices, such as 3D trans-esophageal (TEE) and intra-cardiac echocardiography (ICE) probes (Fig. 10.5.1). The main obstacle lies in the mismatch between the large number of transducer elements (103 to 104) and the limited cable count (<200). Recent advances in transducer-on-CMOS integration have enabled the use of in-probe subarray beamforming based on delay-and-sum (DAS) circuits [1] to reduce the channel count by an order of magnitude. Further reduction calls for in-probe digitization to enable more advanced data processing and compression in the digital domain. However, prior designs [2-4] compromise on transducer pitch (> half wavelength) to accommodate the ADC and consume >9mW/element, which translates into unacceptable self-heating in miniature 3D probes.\",\"PeriodicalId\":6617,\"journal\":{\"name\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"volume\":\"190 1\",\"pages\":\"186-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2018.8310246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 0.91mW/element pitch-matched front-end ASIC with integrated subarray beamforming ADC for miniature 3D ultrasound probes
Data acquisition from 2D transducer arrays is one of the main challenges for the development of emerging miniature 3D ultrasound imaging devices, such as 3D trans-esophageal (TEE) and intra-cardiac echocardiography (ICE) probes (Fig. 10.5.1). The main obstacle lies in the mismatch between the large number of transducer elements (103 to 104) and the limited cable count (<200). Recent advances in transducer-on-CMOS integration have enabled the use of in-probe subarray beamforming based on delay-and-sum (DAS) circuits [1] to reduce the channel count by an order of magnitude. Further reduction calls for in-probe digitization to enable more advanced data processing and compression in the digital domain. However, prior designs [2-4] compromise on transducer pitch (> half wavelength) to accommodate the ADC and consume >9mW/element, which translates into unacceptable self-heating in miniature 3D probes.