Guangliang Cheng, Ying Wang, Yongchao Gong, Feiyun Zhu, Chunhong Pan
{"title":"基于概率传播的图割城市道路提取","authors":"Guangliang Cheng, Ying Wang, Yongchao Gong, Feiyun Zhu, Chunhong Pan","doi":"10.1109/ICIP.2014.7026027","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a graph cuts (GC) based probability propagation approach to automatically extract road network from complex remote sensing images. First, the support vector machine (SVM) classifier with a sigmoid model is applied to assign each pixel a posterior probability of being labelled as road class, which avoids the weaknesses of hard labels in general SVM. Then a GC based probability propagation algorithm is employed to keep the extracted road results smooth and coherent, which can reduce the connections between roads and road-like objects. Finally, a road-geometrical prior is considered to refine the extraction result, so that the non-road objects in images can be removed. Experimental results on two remote sensing image datasets indicate the validity and effectiveness of our method by comparing with two other approaches.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"87 1","pages":"5072-5076"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Urban road extraction via graph cuts based probability propagation\",\"authors\":\"Guangliang Cheng, Ying Wang, Yongchao Gong, Feiyun Zhu, Chunhong Pan\",\"doi\":\"10.1109/ICIP.2014.7026027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a graph cuts (GC) based probability propagation approach to automatically extract road network from complex remote sensing images. First, the support vector machine (SVM) classifier with a sigmoid model is applied to assign each pixel a posterior probability of being labelled as road class, which avoids the weaknesses of hard labels in general SVM. Then a GC based probability propagation algorithm is employed to keep the extracted road results smooth and coherent, which can reduce the connections between roads and road-like objects. Finally, a road-geometrical prior is considered to refine the extraction result, so that the non-road objects in images can be removed. Experimental results on two remote sensing image datasets indicate the validity and effectiveness of our method by comparing with two other approaches.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"87 1\",\"pages\":\"5072-5076\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7026027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7026027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Urban road extraction via graph cuts based probability propagation
In this paper, we propose a graph cuts (GC) based probability propagation approach to automatically extract road network from complex remote sensing images. First, the support vector machine (SVM) classifier with a sigmoid model is applied to assign each pixel a posterior probability of being labelled as road class, which avoids the weaknesses of hard labels in general SVM. Then a GC based probability propagation algorithm is employed to keep the extracted road results smooth and coherent, which can reduce the connections between roads and road-like objects. Finally, a road-geometrical prior is considered to refine the extraction result, so that the non-road objects in images can be removed. Experimental results on two remote sensing image datasets indicate the validity and effectiveness of our method by comparing with two other approaches.