{"title":"检测大众分类法中的重叠社区","authors":"Abhijnan Chakraborty, Saptarshi Ghosh, Niloy Ganguly","doi":"10.1145/2309996.2310032","DOIUrl":null,"url":null,"abstract":"Folksonomies like Delicious and LastFm are modeled as tripartite (user-resource-tag) hypergraphs for studying their network properties. Detecting communities of similar nodes from such networks is a challenging problem. Most existing algorithms for community detection in folksonomies assign unique communities to nodes, whereas in reality, users have multiple topical interests and the same resource is often tagged with semantically different tags. The few attempts to detect overlapping communities work on projections of the hypergraph, which results in significant loss of information contained in the original tripartite structure. We propose the first algorithm to detect overlapping communities in folksonomies using the complete hypergraph structure. Our algorithm converts a hypergraph into its corresponding line-graph, using measures of hyperedge similarity, whereby any community detection algorithm on unipartite graphs can be used to produce overlapping communities in the folksonomy. Through extensive experiments on synthetic as well as real folksonomy data, we demonstrate that the proposed algorithm can detect better community structures as compared to existing state-of-the-art algorithms for folksonomies.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"137 1","pages":"213-218"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Detecting overlapping communities in folksonomies\",\"authors\":\"Abhijnan Chakraborty, Saptarshi Ghosh, Niloy Ganguly\",\"doi\":\"10.1145/2309996.2310032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Folksonomies like Delicious and LastFm are modeled as tripartite (user-resource-tag) hypergraphs for studying their network properties. Detecting communities of similar nodes from such networks is a challenging problem. Most existing algorithms for community detection in folksonomies assign unique communities to nodes, whereas in reality, users have multiple topical interests and the same resource is often tagged with semantically different tags. The few attempts to detect overlapping communities work on projections of the hypergraph, which results in significant loss of information contained in the original tripartite structure. We propose the first algorithm to detect overlapping communities in folksonomies using the complete hypergraph structure. Our algorithm converts a hypergraph into its corresponding line-graph, using measures of hyperedge similarity, whereby any community detection algorithm on unipartite graphs can be used to produce overlapping communities in the folksonomy. Through extensive experiments on synthetic as well as real folksonomy data, we demonstrate that the proposed algorithm can detect better community structures as compared to existing state-of-the-art algorithms for folksonomies.\",\"PeriodicalId\":91270,\"journal\":{\"name\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"volume\":\"137 1\",\"pages\":\"213-218\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2309996.2310032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2309996.2310032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Folksonomies like Delicious and LastFm are modeled as tripartite (user-resource-tag) hypergraphs for studying their network properties. Detecting communities of similar nodes from such networks is a challenging problem. Most existing algorithms for community detection in folksonomies assign unique communities to nodes, whereas in reality, users have multiple topical interests and the same resource is often tagged with semantically different tags. The few attempts to detect overlapping communities work on projections of the hypergraph, which results in significant loss of information contained in the original tripartite structure. We propose the first algorithm to detect overlapping communities in folksonomies using the complete hypergraph structure. Our algorithm converts a hypergraph into its corresponding line-graph, using measures of hyperedge similarity, whereby any community detection algorithm on unipartite graphs can be used to produce overlapping communities in the folksonomy. Through extensive experiments on synthetic as well as real folksonomy data, we demonstrate that the proposed algorithm can detect better community structures as compared to existing state-of-the-art algorithms for folksonomies.