热分子的实验室光谱:热超级地球系外行星的数据需求

Q2 Physics and Astronomy
Jonathan Tennyson, Sergei N. Yurchenko
{"title":"热分子的实验室光谱:热超级地球系外行星的数据需求","authors":"Jonathan Tennyson,&nbsp;Sergei N. Yurchenko","doi":"10.1016/j.molap.2017.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>The majority of stars are now thought to support exoplanets. Many of those exoplanets discovered thus far are categorized as rocky objects with an atmosphere. Most of these objects are however hot due to their short orbital period. Models suggest that water is the dominant species in their atmospheres. The hot temperatures are expected to turn these atmospheres into a (high pressure) steam bath containing remains of melted rock. The spectroscopy of these hot rocky objects will be very different from that of cooler objects or hot gas giants. Molecules suggested to be important for the spectroscopy of these objects are reviewed together with the current status of the corresponding spectroscopic data. Perspectives of building a comprehensive database of linelist/cross sections applicable for atmospheric models of rocky super-Earths as part of the ExoMol project are discussed. The quantum-mechanical approaches used in linelist productions and their challenges are summarized.</p></div>","PeriodicalId":44164,"journal":{"name":"Molecular Astrophysics","volume":"8 ","pages":"Pages 1-18"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molap.2017.05.002","citationCount":"42","resultStr":"{\"title\":\"Laboratory spectra of hot molecules: Data needs for hot super-Earth exoplanets\",\"authors\":\"Jonathan Tennyson,&nbsp;Sergei N. Yurchenko\",\"doi\":\"10.1016/j.molap.2017.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The majority of stars are now thought to support exoplanets. Many of those exoplanets discovered thus far are categorized as rocky objects with an atmosphere. Most of these objects are however hot due to their short orbital period. Models suggest that water is the dominant species in their atmospheres. The hot temperatures are expected to turn these atmospheres into a (high pressure) steam bath containing remains of melted rock. The spectroscopy of these hot rocky objects will be very different from that of cooler objects or hot gas giants. Molecules suggested to be important for the spectroscopy of these objects are reviewed together with the current status of the corresponding spectroscopic data. Perspectives of building a comprehensive database of linelist/cross sections applicable for atmospheric models of rocky super-Earths as part of the ExoMol project are discussed. The quantum-mechanical approaches used in linelist productions and their challenges are summarized.</p></div>\",\"PeriodicalId\":44164,\"journal\":{\"name\":\"Molecular Astrophysics\",\"volume\":\"8 \",\"pages\":\"Pages 1-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molap.2017.05.002\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S240567581730012X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240567581730012X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 42

摘要

现在大多数恒星都被认为存在系外行星。迄今为止发现的许多系外行星都被归类为有大气层的岩石物体。然而,由于轨道周期短,这些天体中的大多数都是热的。模型表明,水是它们大气中的主要物质。高温预计会把这些大气变成一个(高压)蒸汽浴池,里面含有融化岩石的残留物。这些热岩石物体的光谱将与较冷的物体或热气体巨星的光谱大不相同。本文综述了对这些天体的光谱研究有重要意义的分子及其光谱数据的现状。讨论了在ExoMol项目中建立适用于岩石超级地球大气模型的线表/截面综合数据库的前景。总结了线列生产中使用的量子力学方法及其面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laboratory spectra of hot molecules: Data needs for hot super-Earth exoplanets

The majority of stars are now thought to support exoplanets. Many of those exoplanets discovered thus far are categorized as rocky objects with an atmosphere. Most of these objects are however hot due to their short orbital period. Models suggest that water is the dominant species in their atmospheres. The hot temperatures are expected to turn these atmospheres into a (high pressure) steam bath containing remains of melted rock. The spectroscopy of these hot rocky objects will be very different from that of cooler objects or hot gas giants. Molecules suggested to be important for the spectroscopy of these objects are reviewed together with the current status of the corresponding spectroscopic data. Perspectives of building a comprehensive database of linelist/cross sections applicable for atmospheric models of rocky super-Earths as part of the ExoMol project are discussed. The quantum-mechanical approaches used in linelist productions and their challenges are summarized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Astrophysics
Molecular Astrophysics ASTRONOMY & ASTROPHYSICS-
自引率
0.00%
发文量
0
期刊介绍: Molecular Astrophysics is a peer-reviewed journal containing full research articles, selected review articles, and thematic issues. Molecular Astrophysics is a new journal where researchers working in planetary and exoplanetary science, astrochemistry, astrobiology, spectroscopy, physical chemistry and chemical physics can meet and exchange their ideas. Understanding the origin and evolution of interstellar and circumstellar molecules is key to understanding the Universe around us and our place in it and has become a fundamental goal of modern astrophysics. Molecular Astrophysics aims to provide a platform for scientists studying the chemical processes that form and dissociate molecules, and control chemical abundances in the universe, particularly in Solar System objects including planets, moons, and comets, in the atmospheres of exoplanets, as well as in regions of star and planet formation in the interstellar medium of galaxies. Observational studies of the molecular universe are driven by a range of new space missions and large-scale scale observatories opening up. With the Spitzer Space Telescope, the Herschel Space Observatory, the Atacama Large Millimeter/submillimeter Array (ALMA), NASA''s Kepler mission, the Rosetta mission, and more major future facilities such as NASA''s James Webb Space Telescope and various missions to Mars, the journal taps into the expected new insights and the need to bring the various communities together on one platform. The journal aims to cover observational, laboratory as well as computational results in the galactic, extragalactic and intergalactic areas of our universe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信